ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Climate change  (1)
  • slurry-viscosity  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    International journal of biometeorology 38 (1995), S. 141-147 
    ISSN: 1432-1254
    Keywords: Climate change ; Winter mortality ; Temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geography , Physics
    Notes: Abstract In Britain death rates from several important causes, particularly circulatory and respiratory diseases, rise markedly during the colder winter months. This close association between temperature and mortality suggests that climate change as a result of global warming may lead to a future reduction in excess winter deaths. This paper gives a brief introductory review of the literature on the links between cold conditions and health, and statistical models are subsequently developed of the associations between temperature and monthly mortality rates for the years 1968 to 1988 for England and Wales. Other factors, particularly the occurrence of influenza epidemics, are also taken into account. Highly significant negative associations were found between temperature and death rates from all causes and from chronic bronchitis, pneumonia, ischaemic heart disease and cerebrovascular disease. The statistical models developed from this analysis were used to compare death rates for current conditions with those that might be expected to occur in a future warmer climate. The results indicate that the higher temperatures predicted for 2050 might result in nearly 9000 fewer winter deaths each year with the largest contribution being from mortality from ischaemic heart disease. However, these preliminary estimates might change when further research is able to make into account a number of additional factors affecting the relationship between mortality and climate.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Colloid & polymer science 272 (1994), S. 1175-1189 
    ISSN: 1435-1536
    Keywords: Sodium-polyacrylate ; calcite-dispersion ; colloidal-stability ; slurry-viscosity ; paper
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The stabilising action of sodium polyacrylate on colloidal dispersions of calcite has been investigated through measurement of viscosity, ion concentration and electrophoretic mobility. The dose of sodium polyacrylate was in the range 0 to 28 mg per g of calcite and the dispersions were prepared at a sodids content of 70% (by weight). The ionic strength of the dispersions, ca. 0.005 to 0.5, increased with dose. An increase in divalent ion concentration with dose was attributed to sodium polyacrylate-ion exchange. The stabilising action of sodium polyacrylate was evident from the sharp fall in viscosity observed at low levels of addition, and the invariance of this low viscosity throughout the remainder of the dose range. The stability of the dispersions at low doses was quantified by DLVO theory and attributed to electric double layer (EDL) repulsion. However, at higher doses, and with the resultant EDL compression, DLVO theory was found inadequate. Instead, recourse was made to steric stabilisation theories in order to explain the observed stability. A model was formulated to characterise the observed multilayer uptake of polyacrylate at higher doses. The steric repulsion evaluated using this model increased with dose and explained the observed higher dose stability. The stability over the dose ranges 〈2, 2 to 6, and 〉6 mg per g is best described as arising from, respectively, electrostatic, electrosteric and steric repulsions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...