ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5079
    Keywords: bacteriochlorophyll ; optical spectroscopy ; site-directed mutagenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Low temperature absorption and linear dichroism (LD) measurements were performed on oriented membranes containing wild type Rhodobacter sphaeroides reaction centers, a mutant reaction center with the change Phe M197 to Arg (FM197R), and a double mutant reaction center where, in addition, Gly M203 was replaced by Asp (FM197R/GM203D). The monomeric bacteriochlorophyll band (B), which is highly congested in the wild type reaction center, was separated into two bands in the mutant reaction centers peaking 10 nm (single mutant) or 15 nm (double mutant) apart. This separation arose principally from changes in the interaction of the protein with the L-side monomer bacteriochlorophyll BL.The ability to separate the B bands is extremely useful in spectroscopic studies. The orientations of the two monomer-type transitions contributing to the B band were similar in all three reaction centres studied, and were asymmetric with respect to the orientation axis, with the transition mostly associated with BL making a smaller angle with the C2 axis. Differences in the LD observed in wild type membrane-bound or isolated reaction centers can be ascribed either to differences in shifts of the B transitions or to differences in the orientation axis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5079
    Keywords: conformational change ; detergent–protein interaction ; ENDOR/TRIPLE-spectroscopy ; pigment–protein interaction ; site-directed mutagenesis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The effects of detergents on the electronic structure of the oxidized primary donor P+ and the time constant τAP of the P+Q A − charge recombination at ambient temperatures have been investigated in native and mutant reaction centers (RCs) from Rhodobacter sphaeroides. It is shown that N-lauryl-N,N-dimethyl-3-ammonio-1-propane sulfonate (SB12) induces a transition to a second distinct conformation of the RC. In the case of the wild type and the mutant FY(M197), in which a hydrogen bond is introduced to the 2-acetyl group of the dimer half of P that is associated with the M-subunit of the RC, the conformational change causes a more asymmetric spin density distribution between the two bacteriochlorophyll moieties of P+ in favor of the L-half. For both types of RCs the time constant τAP depends on the SB12/RC ratio as does the position of the long-wavelength band of P, λmax. The increase of τAP by ∼30 ms and the shift of λmax from ∼866 nm to ∼851 nm are indicative for the conformational change. In addition, a smaller linear increase of τAP with increasing SB12/RC ratio is superimposed on the variation of τAP due to the conformational change. Similar effects of SB12 on the optical spectra as well as on τAP are also observed for the two heterodimer mutants HL(L173) and HL(M202), in which one of the bacteriochlorophylls of P is replaced by a bacteriopheophytin. There are no clear indications for a correlation of τAP with the localization of the positive charge in P+. Furthermore, it is concluded from the dependence of τAP on the SB12/RC ratio that the single-site mutations do not affect the standard free energy difference of the two conformations to a measurable extent.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5079
    Keywords: electron transfer ; herbicide binding ; membrane protein ; site-directed mutagenesis ; ubiquinone binding
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Three single-site mutations have been introduced at positions close to the QA ubiquinone in the reaction centre from Rhodobacter sphaeroides. Two of these mutations, Ala M260 to Trp and Ala M248 to Trp, result in a reaction centre that does not support photosynthetic growth of the bacterium, and in which electron transfer to the QA ubiquinone is abolished. In the reaction centre with an Ala to Trp mutation at the M260 residue, electron transfer from the primary donor to the acceptor bacteriopheophytin is not affected by the mutation, but electron transfer from the acceptor bacteriopheophytin to QA is not observed. The most likely basis for these effects is that the mutation produces a structural change that excludes binding of the QA ubiquinone. A third mutation, Leu M215 to Trp, produces a reaction centre that has an impaired capacity for supporting photosynthetic growth. The mutation changes the nature of ubiquinone binding at the QA site, and renders the site sensitive to quinone site inhibitors such as o- phenanthroline. Adopting a similar approach, in which a small residue located close to a cofactor is changed to a more bulky residue, we show that the reaction centre can be rendered carotenoid-less by the mutation Gly M71 to Leu.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5079
    Keywords: atomic structure ; membrane protein ; purple bacteria ; site-directed mutagenesis ; X-ray crystallography
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract X-ray structures have been determined for five mutant reaction centres from Rhodobacter sphaeroides, at resolutions varying between 3.4 Å and 2.3 Å. The aim was to examine the effects of mutagenesis of polar residues in the binding pocket of the reaction centre carotenoid. The number of water molecules identified in each structure depended on the resolution and completeness of the data. In a 2.3 Å structure for a WM115F/FM197R mutant reaction centre, two water molecules partially filled the cavity that was created when the tryptophan residue was replaced by a less bulky phenylalanine. Structures obtained for four reaction centres with mutations of polar residues in the carotenoid binding pocket failed to show any significant change in the structure of the reaction centre carotenoid. Low resolution data for a YM210W mutant reaction centre showed that the overall structure of this complex is well conserved. This finding is discussed in light of the intriguing spectroscopic properties of the YM210W mutant reaction centre, and an alternative pathway for transmembrane electron transfer identified in this mutant.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...