ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 6 (1994), S. 353-374 
    ISSN: 1573-269X
    Keywords: Autoparametric resonance ; combination resonance ; saturation ; phase-locked motions ; quasiperiodic motions
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract The response of a structure to a simple-harmonic excitation is investigated theoretically and experimentally. The structure consists of two light-weight beams arranged in a T-shape turned on its side. Relatively heavy and concentrated weights are placed at the upper and lower free ends and at the point where the two beams are joined. The base of the ‘T’ is clamped to the head of a shaker. Because the masses of the concentrated weights are much larger than the masses of the beams, the first three natural frequencies are far below the fourth; consequently, for relatively low frequencies of the excitation, the structure has, for all practical purposes, only three degrees of freedom. The lengths and weights are chosen so that the third natural frequency is approximately equal to the sum of the two lower natural frequencies, an arrangement that produces an autoparametric (also called an internal) resonance. A linear analysis is performed to predict the natural frequencies and to aid in the design of the experiment; the predictions and observations are in close agreement. Then a nonlinear analysis of the response to a prescribed transverse motion at the base of the ‘T’ is performed. The method of multiple scales is used to obtain six first-order differential equations describing the modulations of the amplitudes and phases of the three interacting modes when the frequency of the excitation is near the third natural frequency. Some of the predicted phenomena include periodic, two-period quasiperiodic, and phase-locked (also called synchronized) motions; coexistence of multiple stable motions and the attendant jumps; and saturation. All the predictions are confirmed in the experiments, and some phenomena that are not yet explained by theory are observed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 20 (1999), S. 283-295 
    ISSN: 1573-269X
    Keywords: vibration absorber ; saturation ; internal resonance ; bifurcations
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract We study the dynamics of a nonlinear active vibration absorber. We consider a plant model possessing curvature and inertia nonlinearities and introduce a second-order absorber that is coupled with the plant through user-defined cubic nonlinearities. When the plant is excited at primary resonance and the absorber frequency is approximately equal to the plant natural frequency, we show the existence of a saturation phenomenon. As the forcing amplitude is increased beyond a certain threshold, the response amplitude of the directly excited mode (plant) remains constant, while the response amplitude of the indirectly excited mode (absorber) increases. We obtain an approximate solution to the governing equations using the method of multiple scales and show that the system possesses two possible saturation values. Using numerical techniques, we perform stability analyses and demonstrate that the system exhibits complicated dynamics, such as Hopf bifurcations, intermittency, and chaotic responses.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Nonlinear dynamics 13 (1997), S. 189-202 
    ISSN: 1573-269X
    Keywords: Internal resonance ; saturation ; control ; energy transfer
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract A novel approach for implementing an active nonlinear vibration absorber is presented. The absorber, which is built in electronic circuitry, takes advantage of the saturation phenomenon that occurs when two natural frequencies of a system with quadratic nonlinearities are in the ratio of two-to-one. When the system is excited at a frequency near the higher natural frequency, there is a small ceiling for the system response at the higher frequency and the rest of the input energy is channeled to the low-frequency mode. A working model of using saturation to suppress the vibrations of a rigid beam connected to a DC motor has been built. An electronic oscillator is built, and its frequency is set at one-half the frequency of the beam. The output from a sensor on the beam is multiplied by the output from the electronic oscillator and a suitable gain, and the result is used as the forcing term for the oscillator. At the same time, the output from the oscillator is squared and multiplied by a suitable gain, and that result is used as the input to the motor. The oscillator/actuator and the beam act as the two modes of a two-degree-of-freedom quadratically coupled system with a 2:1 autoparametric resonance. When the beam is excited by a harmonic force, its motion quickly becomes saturated, and most of the energy imparted to the beam by the harmonic force is transferred to the electronic circuit and from there to the actuator. Thus, the harmonic force is made to work against itself. As a result, the motion of the beam always remains small.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...