ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 4 (1984), S. 351-370 
    ISSN: 0886-1544
    Keywords: axon ; rate ; nervous system ; tissue culture ; cell growth ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: A new formula calculates rates of directed axonal growth (elongation or retraction) using measurements of growth cone movements. By explicitly separating changes in axonal length from other nonelongational growth cone movements, the calculated rates reflect the detailed cellular growth mechanisms more directly than previous growth measures. In addition, the formula produces three distinct parameters of axonal elongation: n, a growth step rate; s, a growth step size; and P, a probability that a growth step leads to axonal elongation. For normal and regenerating individual chick and frog axons in culture, the formula has quantitated the following differences: the axon itself can elongate more rapidly in the chick, and the axon elongates in smaller steps in the chick. The underlying dynamics of growth of regenerating axons are quite similar to normal axons, but, in the short term, regenerating axons elongate in larger steps and at a slower rate. The distribution of these new rate measurements suggests that the elongation of axons can be usefully modelled as a one-dimensional stochastic walk.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...