ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0192-8651
    Keywords: protein structure prediction ; united-residue representation of a polypeptide chain ; potential of mean force ; inverse folding ; Z-score ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: Continuing our work on the determination of an off-lattice united-residue force field for protein-structure simulations, we determined and parameterized appropriate functional forms for the local-interaction terms, corresponding to the rotation about the virtual bonds (Utor), the bending of virtual-bond angles (Ub), and the energy of different rotameric states of side chains (Urot). These terms were determined by applying the Boltzmann principle to the distributions of virtual-bond torsional and virtual-bond angles and side-chain rotameric states, respectively, calculated from a data base of 195 high-resolution nonhomologous proteins. The complete energy function was constructed by combining the individual energy terms with appropriate weights. The weights were determined by optimizing the so-called Z-score value (which is the normalized difference between the energy of the native structure and the mean energy of non-native structures) of the histidine-containing phosphocarrier protein from Streptococcus faecalis (1PTF; an 88-residue α + β protein). To accomplish this, a database of Cα patterns was created using high-resolution nonhomologous protein structures from the Protein Data Bank, and the distributions of energy components of 1PTF were obtained by threading its sequence through ∼500 randomly chosen Cα-patterns from the X-ray structures in the PDB, followed by energy minimization, with the energy function incorporating initially guessed weights. The resulting minimized energies were used to optimize the Z-score value of 1PTF as a function of the weights of the various energy terms, and the new weights were used to generate new energy-component distributions. The process was iterated, until the weights used to generate the distributions and the optimized weights were self-consistent. The potential function with the weights of the various energy terms obtained by optimizing the Z-score value for 1PTF was found to locate the native structures of other test proteins (within an average RMS deviation of 3 Å): calcium-binding protein (4ICB), ubiquitin (1UBQ), α-spectrin (1SHG), major cold-shock protein (1MJC), and cytochrome b5 (3B5C) (which included α and β structures) as distinctively lowest in energy in similar threading experiments. © 1997 by John Wiley & Sons, Inc. J Comput Chem 18: 874-887, 1997
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0192-8651
    Keywords: protein structure prediction ; united-residue representation of a polypeptide chain ; potential of mean force ; radial and angular distribution functions ; Chemistry ; Theoretical, Physical and Computational Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Computer Science
    Notes: A two-stage procedure for the determination of a united-residue potential designed for protein simulations is outlined. In the first stage, the long-range and local-interaction energy terms of the total energy of a polypeptide chain are determined by analyzing protein-crystal data and averaging the all-atom energy surfaces. In the second stage (described in the accompanying article), the relative weights of the energy terms are optimized so as to locate the native structures of selected test proteins as the lowest energy structures. The goal of the work in the present study is to parameterize physically reasonable functional forms of the potentials of mean force for side-chain interactions. The potentials are of both radial and anisotropic type. Radial potentials include the Lennard-Jones and the shifted Lennard-Jones potential (with the shift parameter independent of orientation). To treat the angular dependence of side-chain interactions, three functional forms of the potential that were designed previously to describe anisotropic systems are evaluated: Berne-Pechukas (dilated Lennard-Jones); Gay-Berne (shifted Lennard-Jones with orientation-dependent shift parameters); and Gay-Berne-Vorobjev (the same as the preceding one, but with one more set of variable parameters). These functional forms were used to parameterize, within a short-distance range, the potentials of mean force for side-chain pair interactions that are related by the Boltzmann principle to the pair correlation functions determined from protein-crystal data. Parameter determination was formulated as a generalized nonlinear least-squares problem with the target function being the weighted sum of squares of the differences between calculated and “experimental” (i.e., estimated from protein-crystal data) angular, radial-angular, and radial pair correlation functions, as well as contact free energies. A set of 195 high-resolution nonhomologous structures from the Protein Data Bank was used to calculate the “experimental” values. The contact free energies were scaled by the slope of the correlation line between side-chain hydrophobicities, calculated from the contact free energies, and those determined by Fauchere and Pliška from the partition coefficients of amino acids between water and n-octanol. The methylene group served to define the reference contact free energy corresponding to that between the glycine methylene groups of backbone residues. Statistical analysis of the goodness of fit revealed that the Gay-Berne-Vorobjev anisotropic potential fits best to the experimental radial and angular correlation functions and contact free energies and therefore represents the free-energy surface of side-chain-side-chain interactions most accurately. Thus, its choice for simulations of protein structure is probably the most appropriate. However, the use of simpler functional forms is recommended, if the speed of computations is an issue. © 1997 by John Wiley & Sons, Inc. J Comput Chem 18: 849-873, 1997
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...