ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Antisense repression ; Photosynthesis ; Solanum ; Starch synthesis ; Triose phosphate translocator
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The introduction of an antisense DNA into transgenic potato (Solanum tuberosum L.) plants decreased the expression of the chloroplast triose-phosphate translocator and lowered its activity by 20–30%. With plants propagated from tubers, the effect of the transformation on photosynthetic metabolism was analysed by measuring photosynthesis, the formation of leaf starch, and the total and subcellular metabolite contents in leaves. Although the transformants, in contrast to those propagated from cell cultures, did not differ from the wild-type plants in respect to rates of photosynthesis, plant appearance, growth and tuber production, their photosynthetic metabolism was found to be severely affected. The results show that the decrease in activity of the triose-phosphate translocator in the transformants caused a fourfold increase in the level of 3-phosphoglycerate and a corresponding decrease in inorganic phosphate in the stromal compartment, resulting in a large increase in the synthesis of starch. Whereas during a 12-h day period wild-type plants deposited 43% of their CO2 assimilate into starch, this value rose to 61–89% in the transformants. In contrast to the wild-type plants, where the rate of assimilate export from the leaves during the night period was about 75% of that during the day, the export rate from leaves of transformants appeared to be much higher during the night than during the day. As the mobilisation of starch occurs in part hydrolytically, resulting in the formation of glucose, the triose-phosphate translocator loses its exclusive function in the export of carbohydrates from the chloroplasts when the photoassimilates are temporarily deposited as starch. It appears that by directing the CO2 assimilates mainly into starch, the transformants compensate for the deficiency in triose-phosphate translocator activity in such a way that the productivity of the plants is not affected by the transformation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: patatin ; potato ; transposon ; gene inactivation ; β-glucuronidase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The promoter of the PGT3 patatin gene belonging to the class II subfamily is highly homologous to other class II patatin genes except for a 736 bp insertion in front of the putative transcription start site. The insertion is characterized by structural features resembling a transposable element such as an 11 bp inverted repeat at the termini and an 8 bp duplication flanking the insertion site. Despite the high homology to active patatin genes, fusion of its promoter to the β-glucuronidase reporter gene does not lead to detectable β-glucuronidase (GUS) activity in transgenic potato or tobacco plants, suggesting that the inactivation of this gene might be caused by the insertion of the transposon like element.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: patatin ; promoter ; β-glucuronidase ; potato
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The class-specific expression of patatin genes was investigated by analysing four new patatin genes. A class I patatin gene from cv. Berolina as well as a class I and two class II patatin genes from the monohaploid cultivar AM 80/5793 were isolated and partially sequenced. Sequence comparison indicates rearrangements as the major source for the generation of diversity between the different members of the classes. The expression of single genes was studied in potato plants transformed with chimaeric genes where the putative patatin promoters were fused to the GUS reporter gene. A detailed histochemical analysis reveals that both class I genes are expressed as the previously described class I patatin gene B33 from cv. Berolina [1], i.e. in the starch-containing cells of potato tubers and in sucrose-induced leaves. The class II gene pgT12 shows the same pattern as the previously described class II gene pgT2 [2], i.e. expression in root tips and in the vascular tissue of tubers, whereas no activity was detectable for pgT4. Thus the expression pattern of both classes of genes seems to be stable at least within or even between different cultivars.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...