ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    Journal of Biomedical Materials Research 40 (1998), S. 195-203 
    ISSN: 0021-9304
    Keywords: polyurethane ; phosphorylcholine ; protein adsorption ; phospholipid adsorption ; ellipsometry ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Medicine , Technology
    Notes: In a previous report we demonstrated that the blood compatibility of poly(ether urethane) (PEU) was improved by grafting phosphorylcholine (PC) groups on the surface. The improved blood compatibility was indicated by decreased platelet adsorption/activation and reduced thrombin formation at the polymer surface in experiments in which the surfaces were contacted with platelet-rich plasma in vitro. In the present study, we investigated the effect of grafted PC groups at a PEU surface on protein and phospholipid adsorption. Adsorption of human fibrinogen (Fg), human serum albumin (Alb), human high-molecular-weight kininogen (HMWK), and dioleoyl phosphatidylcholine (DOPC) vesicles was measured by ellipsometry. For this purpose, thin PEU films were cast on silicon wafers. The polymer film was photochemically modified with a PC-containing aryl azide. The presence of PC groups on the polymer surface was demonstrated by ESCA (Electron Spectroscopy for Chemical Analysis). The hydrophilicity of the polymer surface increased by the surface modification, as indicated by a decrease of the contact angle from 59° before to 43° after modification. Our data show that the presence of PC groups has little effect on the adsorption of proteins to a PEU surface. The highest adsorption was observed for Fg (0.49 μg/cm2 on PC-modified PEU and 0.50 μg/cm2 on PEU), followed by HMWK (0.28 μg/cm2 on both PC-modified PEU and PEU), and Alb (0.16 μg/cm2 on PC-modified PEU and 0.18 μg/cm2 on PEU). Protein adsorption was further studied on a “biomembrane-like” DOPC bilayer formed on hydrophilic silicon. We found no protein adsorption on this DOPC bilayer. The adsorption of small unilamellar DOPC vesicles on the polymer surfaces amounted to about 0.06 μg/cm2 (corresponding to circa 30% of monolayer coverage) and was similar for PC-modified PEU and PEU. Despite this partial surface coverage, preadsorbed DOPC on the polymer surface diminished the subsequent adsorption of proteins considerably. These results show that the mere presence of phosphorylcholine groups on a PEU surface is insufficient to suppress protein adsorption. The highly ordered structure of natural phospholipid bilayers seems to be required to suppress protein adsorption effectively. © 1998 John Wiley & Sons, Inc. J Biomed Mater Res, 40, 195-203, 1998
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...