ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Surveys in geophysics 21 (2000), S. 499-520 
    ISSN: 1573-0956
    Keywords: Very Long Baseline Interferometry (VLBI) ; Earth rotation ; length of day ; polar motion ; inertial reference frame ; wavelet transformation ; atmospheric angular momentum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract An overview of the abilities of Very Long Baseline Interferometry (VLBI) to measure the variable Earth rotation and of the international VLBI collaboration is given. The paper concentrates on the short-period, i.e. subseasonal variations of Earth rotation which can be seen in VLBI measurements of length of day (lod) and polar motion between 1981 and 1999. The wavelet transform allows the time localisation of an irregular quasi-harmonic signal within a given data set. The wavelet analysis of lod series yields in the high-frequency range periods of ∼28 days, ∼14 days down to 6.86 days caused by the lunisolar tides and irregular quasi-periodic variations between 40 and 130 days. These are mainly associated with global zonal wind changes which can be seen when looking on the wavelet cross-scalogram between the lod series and the atmospheric angular momentum (AAM) time series. In polar motion variable periods between two and five months and even down to 7–10 days can be made visible by the wavelet scalograms.Today it is possible by VLBI to determine polar motion and UT1-UTC with a temporal resolution of as short as 3–7 minutes. The results of parallel VLBI sessions which took place since 1998 using two independent VLBI networks were analyzed in the subdiurnal period range and compared by computing the wavelet cross-scalograms, the covariance spectrum and the normed coherency. Periods between 5 and 7 hours can be seen in many of the UT1-UTC data sets besides the well-known diurnal and semi-diurnal periods. The wavelet analyses reveal interesting patterns in the subdiurnal range in polar motion, too.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: The main activities of the VLBI group at the Department of Geodesy and Geoinformation of the Vienna University of Technology were related to the development of the Vienna VLBI Software VieVS (http://vievs.hg.tuwien.ac.at/) and its application for various studies. For example, we dealt with scheduling, satellite tracking, and the estimation of geodynamical and astronomical parameters from VLBI observations. One highlight was the release of VieVS 2.0 just before the third VieVS User Workshop in September 2012.
    Keywords: Geosciences (General)
    Type: International VLBI Service for Geodesy and Astrometry 2012 Annual Report; 325-328; NASA/TP-2013-217511
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-29
    Description: Abstract
    Description: This dataset contains predictions of Earth orientation parameters (EOP) submitted during the Second Earth Orientation Parameters Prediction Comparison Campaign (2nd EOP PCC). The 2nd EOP PCC has been carried out by Centrum Badań Kosmicznych Polskiej Akademii Nauk CBK PAN in Warsaw in cooperation with the GFZ German Research Centre for Geosciences in Potsdam (Germany) and under the auspices of the International Earth Rotation and Reference Systems Service (IERS) within the IERS Working Group on the 2nd EOP PCC. The purpose of the campaign was to re-assess the current capabilities of EOP forecasting and to find most reliable prediction approaches. The operational part of the campaign lasted between September 1, 2021 and December 28, 2022. Throughout the duration of the 2nd EOP PCC, registered campaign participants submitted forecasts for all EOP parameters, including dX, dY, dPsi, dEps (components of celestial pole offsets), polar motion, differences between universal time and coordinated universal time, and its time-derivative length-of-day change. These submissions were made to the EOP PCC Office every Wednesday before the 20:00 UTC deadline. The predictions were then evaluated once the geodetic final EOP observations from the forecasted period became available. Each participant could register more than one method, and each registered method was assigned an individual ID, which was used, e.g., for file naming. The dataset contains text files with predicted parameters as submitted by campaign participants and MATLAB file which is a database with all correct predictions from each participant loaded into a structure. Campaign overview and first results are described in the following articles: Śliwińska, J., Kur, T., Wińska, M., Nastula, J., Dobslaw, H., & Partyka, A. (2022). Second Earth Orientation Parameters Prediction Comparison Campaign (2nd EOP PCC): Overview. Artificial Satellites, 57(S1), 237–253. https://doi.org/10.2478/arsa-2022-0021 Kur, T., Dobslaw, H., Śliwińska, J., Nastula, J., & Wińska, M. (2022). Evaluation of selected short ‑ term predictions of UT1 ‑ UTC and LOD collected in the second earth orientation parameters prediction comparison campaign. Earth, Planets and Space, 74. https://doi.org/10.1186/s40623-022-01753-9
    Keywords: Earth orientation parameters ; prediction ; polar motion ; universal time ; length-of-day ; nutation ; celestial pole offsets ; UT1-UTC ; Earth Remote Sensing Instruments 〉 Active Remote Sensing 〉 Positioning/Navigation ; EARTH SCIENCE 〉 SOLID EARTH 〉 GEODETICS 〉 COORDINATE REFERENCE SYSTEM 〉 GLOBAL COORDINATE REFERENCE SYSTEM ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 POLAR MOTION ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 ROTATIONAL MOTION/VARIATIONS ; EARTH SCIENCE SERVICES 〉 DATA ANALYSIS AND VISUALIZATION 〉 GLOBAL POSITIONING SYSTEMS ; science 〉 geography 〉 geodesy
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...