ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-6822
    Keywords: ethanol ; human hepatic cell line ; plasma membrane ; WRL-68 cells
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Medicine
    Notes: Abstract The aim of this study was to compare the effects of chronic (0.1 mol/L ethanol exposure during 30 days) and acute (0.5 mol/L ethanol exposure during 24 h) ethanol treatment on the physical properties and the lipid composition of plasma membranes of the WRL-68 cells (fetal human hepatic cell line). Using fluorescence polarization we found that ethanol treatment reduced membrane anisotropy due to disorganization of acyl chains in plasma membranes and consequently increased fluidity, as measured with the diphenylhexatriene probe. Addition of ethanolin vitro reduced anisotropy in control plasma membranes, whereas chronically ethanol-treated plasma membranes were relatively tolerant to thein vitro addition of ethanol. Acutely ethanol-treated plasma membranes exhibited a smaller anisotropy parameter value than control plasma membranes. We found a decrease in total phospholipid content in acute ethanol WRL-68 plasma membranes. Cholesterol content was increased in both ethanol treatments, and we also found a significant decrease in phosphatidylinositol and phosphatidylcholine and an increase in phosphatidylethanolamine content in ethanol-treated plasma membranes. Our data showed that ethanol treatment decreased the anisotropy parameter consistently with increased fluidity, while increasing the cholesterol/phospholipid ratio of plasma membranes of WRL-68 cells, but only chronically ethanol-treated plasma membranes exhibited tolerance to thein vitro addition of ethanol. It is important to note that some changes that were interpreted as a result of chronic ethanol treatment were also present in short-period ethanol treatments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of chemical ecology 21 (1995), S. 289-297 
    ISSN: 1573-1561
    Keywords: Ipomoea tricolor ; Echinochloa crusgalli ; allelopathy ; allelochemicals ; resin glycoside ; plasma membrane ; plasma membrane H+-ATPase
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract A resin glycoside mixture isolated fromIpomoea tricolor inhibited radicle growth ofEchinochloa crusgalli. The effect of the resin was tested on the activity of the plasma membrane H+-ATPase fromE. crusgalli. For this purpose, plasma membrane vesicles were purified by the method of aqueous two-phase partitioning. The resin glycoside inhibited by 30% the activity of the plasma membrane ATPase. The same result was obtained with the purified main component of the resin. This indicates that the plasma membrane ATPase can be one of the cellular targets of the resin. Hence it is possible that the mechanism of action of the resin involves an inhibition of the plasma membrane ATPase.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2013-08-31
    Description: Analyzing turbulent flows with rotation, Dubrulle and Valdettaro have concluded that some new effects come into play and may modify the standard picture we have concerning turbulence. In that respect the value of the Rossby number is of crucial importance since it will determine the transition between regimes where rotation is or is not important. With rotation there will be a tendency to constrain the motion to the plane perpendicular to the rotation axis and as a consequence the horizontal scale will increase as compared to the longitudinal one, which means that the turnover time in this direction will increase. The net effect is that the energy cascade down process is hindered by rotation. As a matter of fact, when rotation is present one observes two cascades: an enstrophy (vorticity) cascade from large scales to small scales; and an inverse energy cascade from small scales to large scales. Since the first process is not efficient on transporting energy to the dissipation range, what we see is energy storage in the large structures at the expense of the small structures. This kind of behavior has been confirmed experimentally. For a very large gamma we obtain, in the inertial range, a spectrum of k(exp -3) instead of the usual Kilmogorov's k(exp -5/3) spectrum. In reality, when rotation is dominant, energy gets stored in inertial waves that propagate it essentially in the longitudinal direction. In that case, we can no longer assign just one viscosity to the fluid and, what is most important, the concept of viscosity loses its meaning since we no longer have local transport of energy. Such results, however, were derived considering a hot disk, in which opacity is mainly given by electron scattering. In the present work we have applied the formulation developed in the previous work for the description of the viscous-stage solar nebula.
    Keywords: SOLAR PHYSICS
    Type: Lunar and Planetary Inst., Workshop on Physics of Accretion Disks Around Compact and Young Stars; p 4
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-01-25
    Description: It is widely believed that a primordial solar nebula, the precursor of the Sun and its planetary system, could be best described in terms of an accretion disk. Such an accretion disk is though to be turbulent, and it is usually imagined that turbulent viscosity alone provides the torque responsible for the structure and the evolution of the nebula. However, it was found that an MHD dynamo operating in a turbulent nebula can contemporaneously produce magnetic fields capable of significantly altering or even dominating the total torque. Thus, it seems that no model of a viscous solar nebula is complete without taking magnetic fields into consideration. It was demonstrated that there are usually two distinct regions of nebular disk where a dynamo can operate: the inner region, where the magnetic field coupled to gas due to relatively high thermal ionization; and the outer region, where this coupling is achieved due to nonthermal ionization. Most models also show the existence of an intermediate region, 'the magnetic gap,' where neither thermal nor nonthermal sources can produce enough ionization to provide the necessary coupling between the magnetic field and the gas. The location and width of the gap change substantially from one model to another. At present, we can only estimate the strength of a generated magnetic field. It seems that a large-scale magnetic field is likely to be in the equipartition with the turbulent kinetic energy; however, the intense magnetic fluctuations may greatly exceed this equipartition strength on short time and length scales. To show how a dynamo-generated magnetic field changes the structure of a viscous nebula, we consider four nebula models extensively.
    Keywords: SOLAR PHYSICS
    Type: Twenty-Fourth Lunar and Planetary Science Conference. Part 3: N-Z; p 1351-1352
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...