ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Juglans regia  (1)
  • palaeolimnology  (1)
  • 1
    ISSN: 1617-6278
    Keywords: Vegetation history ; Castanea sativa ; Juglans regia ; Ostrya carpinifolia ; Southern Alps
    Source: Springer Online Journal Archives 1860-2000
    Topics: Archaeology , Biology
    Notes: Abstract Vegetation history for the study region is reconstructed on the basis of pollen, charcoal and AMS14C investigations of lake sediments from Lago del Segrino (calcareous bedrock) and Lago di Muzzano (siliceous bedrock). Late-glacial forests were characterised byBetula andPinus sylvestris. At the beginning of the Holocene they were replaced by temperate continental forest and shrub communities. A special type of temperate lowland forest, withAbies alba as the most important tree, was present in the period 8300 to 4500 B.P. Subsequently,Fagus, Quercus andAlnus glutinosa were the main forest components andA. alba ceased to be of importance.Castanea sativa andJuglans regia were probably introduced after forest clearance by fire during the first century A.D. On soils derived from siliceous bedrock,C. sativa was already dominant at ca. A.D. 200 (A.D. dates are in calendar years). In limestone areas, however,C. sativa failed to achieve a dominant role. After the introduction ofC. sativa, the main trees were initially oak (Quercus spp.) and later the walnut (Juglans regia). Ostrya carpinifolia became the dominant tree around Lago del Segrino only in the last 100–200 years though it had spread into the area at ca. 5000 cal. B.C. This recent expansion ofOstrya is confirmed at other sites and appears to be controlled by human disturbances involving especially clearance. It is argued that these forests should not be regarded as climax communities. It is suggested that under undisturbed succession they would develop into mixed deciduous forests consisting ofFraxinus excelsior, Tilia, Ulmus, Quercus andAcer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1420-9055
    Keywords: Lake Lugano (Lago di Lugano) ; palaeolimnology ; Holocene ; organic and inorganic carbon ; biogenic silica ; ostracoda ; oligochaeta cocoons ; laminated sediments ; pollen ; soil erosion ; eutrophication
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Holocene record of Lake Lugano (southern basin: surface area 20.3 km2, maximum depth 87 m) comprising organic carbon-rich sediments (sapropels), is divided into eight intervals based on radiocarbon- and varve-dating. The content of organic carbon, inorganic carbon, and biogenic silica, as well as the benthic remains of ostracods and oligochaetes, are converted into accumulation rates and benthic abundances in order to assess past production rates and bottom water oxygen status, respectively. The results suggest three periods of distinct palaeolimnological character: (i) low primary production combined with shifts between aerobic and anaerobic profundal conditions (prior to ca. 3000 BC), (ii) moderate rates of production combined with a relatively high profundal oxygen content (after ca. 1500 BC), and (iii), high production rates (460 g C m−2 a−1) combined with anaerobic profundal conditions (present eutrophic state). Corresponding organic carbon contents in the sediments are: up to 5% (i), 4% (ii), and 8% (iii). Until the beginning of this century, the flux of autochthonous sediments to the lake floor correlated with the fluctuations in the allochthonous sediment accumulation rate, indicating that catchment erosion largely controlled lacustrine production during the Holocene history of Lake Lugano. Pollen data show catchment-vegetational transformations at ca. 3500 BC (change from fir to beech forests), at 1400 BC (onset of cereal vegetation) and at ca. A.D. 450 (strong increase in various cultural plants). The first two changes had a relatively large imprint on lacustrine sedimentation. At ca. 3500 BP, erosion increase in the catchment was triggered by vegetation changes in the mountain zone above ca. 1000 m a. s. l., which may have been induced by climatic and human alteration (drop in the treeline altitude). Maximum catchment erosion occurred at ca. 1400 BC which was clearly dominated by human cultivation during the Bronze Age. More oxygenated profundal conditions in the lake after ca. 3000 BC are possibly related to a better mixing of the lake waters during the winter season by increased wind activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...