ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 16 (1981), S. 277-294 
    ISSN: 1573-4889
    Keywords: Binary alloys ; copper-cobalt ; oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The oxidation of a dilute copper-cobalt alloy at high temperatures has been studied to examine the effect of the cobalt addition on the different aspects of copper oxidation. The alloy oxidizes parabolically with a rate constant generally smaller than that of pure copper but approaching it at higher temperatures. The scale is essentially composed of copper oxides (CuO is observed only at 700°C) containing a small concentration of dissolved cobalt and particles of CoO in the inner region of the scale while internal oxidation is observed at all temperatures. The oxidation behavior of the alloy is examined with reference to the known factors affecting the corrosion of binary alloys. A theoretical calculation of the parabolic rate constant for pure copper and for the alloy with cobalt is also presented. Possible reasons for the observed deviation from the effect of doping as predicted on the basis of a simple model for the defect structure of Cu2O are pointed out.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 25 (1986), S. 235-268 
    ISSN: 1573-4889
    Keywords: oxidation ; Mn2O3 ; spinels ; manganowustite ; mechanisms ; fusion reactors
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The oxidation in air of an austenitic Fe-Mn-Cr steel containing 17.8 Mn, 9.5 Cr, 1.0 Ni, 0.27 C, and 0.03 N was studied over the range 700–1000°C. Oxidation of surface-abraded samples at “low” temperatures, 700–750°C, resulted in only Mn 2O3 containing dissolved chromium, except at corners, where large nodules containing spinel and manganowustite formed. The Mn2O3 layer grew into the substrate forming a globular-type film. This growth mode was the result of slow interdiffusion in the alloy after the cold-worked surface layer had been recrystallized and/or consumed, as evidenced by the formation of a ferrite layer subjacent to the scale and by the instability of the planar interface. No internal oxidation was observed beneath the Mn2O3 film at either 700 or 750°C. Samples oxidized in the“high-temperature” region, 800–1000°C, exhibited vastly different behavior, forming thick stratified scales at long times (24 hr), the scales consisting of a very thin outer layer of Mn2O3 (with appreciable iron in solution), Fe-Mn spinel beneath the outer layer, and a thick inner layer of manganowustite and a chromium-containing spinel. No chromium was found in the outer two layers. A thin layer of nearly pure Fe2O3 formed between Mn2O3 and the outer spinel. Quasiparabolic kinetics were observed. The high-temperature rates were about 103 to 104 times greater than at low temperatures at the “transition” temperature. The rapid rates at high temperatures were attributed to manganowustite growth. However, oxidation of an electropolished sample at 750°C, from which the superficial cold-worked layer had been removed, formed scales similar to those observed at high temperatures at comparable rates. A difference by a factor of over 104 existed between the oxidation rate of the electropolished sample and the surface-abraded sample at 750°C. The much slower oxidation rate of the latter is attributed to greatly enchanced manganese diffusion through the high dislocation-density, cold-worked layer. Short-time tests at 800°C revealed an incubation period during which a thin protective layer of Mn2O3 formed. The incubation period corresponded to the recrystallization time of the cold-worked layer. Subsequently, nodular growth occurred which was associated with internal oxidation. The nodules, consisting of spinel and manganowustite, eventually linked up to form a thick, stratified scale. Comparison of the scale structures with calculated phase diagrams of composition versus oxygen activity (at constant temperature), showed that the protective films formed at low temperatures were due to kinetics factors, involving enhanced manganese diffusion through the cold-worked layer, rather than to thermodynamics. A model for the breakdown of protective films is proposed which involves internal oxidation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 37 (1992), S. 167-187 
    ISSN: 1573-4889
    Keywords: H2-H2S-H2O ; sulfidation ; NbO2 ; oxidation ; CoNb3S6
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The corrosion of Co-Nb alloys containing up to 30 wt.% Nb in H2-H2S-H2O gas mixtures was studied over the temperature range of 600–800°C. The gas composition falls in the stability region of cobalt sulfide and Nb2O5 in the phase diagrams of the Co-O-S and Nb-O-S systems at all temperatures studied. Duplex scales, consisting of an outer layer of cobalt sulfide and a complex, heterophasic inner layer, were formed at all temperatures studied. In addition to cobalt sulfide and CoNb3S6, a small amount of NbO2 was found in the inner layer. The reason for the formation of NbO2 over that of Nb2O5 in the scale is that the outer sulfide scale lowers the oxygen activity within the scale into the NbO2-stability region. Two-stage kinetics were observed for all alloys, including an initial irregular stage usually followed by a steady-state parabolic stage. The steady-state parabolic rate constants decreased with increasing amounts of Nb, except for Co-20Nb corroded at 700°C. Nearly identical kinetics were observed for Co-20Nb corroded at 600°C and 700°C. The presence of NbO2 particles leads only to a limited decrease of the available cross-section area for the outward-diffusing metal ions. The activation energies for all alloys are similar and are in agreement with those obtained in a study of the sulfidation of the same alloys. The primary corrosion mechanism involves an outward Co transport.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 37 (1992), S. 217-252 
    ISSN: 1573-4889
    Keywords: mixed gas ; Nb2O5 ; NiNb3S6 ; NiNb2S4 ; multi-layered scales ; oxidation ; sulfidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The corrosion behavior of Ni-Nb alloys containing up to 40 wt.% Nb was studied over the temperature range of 550–800°C in a mixed H2/H2O/H2S gas. The scales formed on all alloys were multilayered. The outer scale was single-phase Ni3S2, while the structure and constitution of the inner scale depended on alloy composition and reaction conditions. Internal oxidation has been found in Ni-20Nb and Ni-30Nb, external oxidation has been observed on Ni-34Nb. Platinum markers were located at the interface between the outer scale and inner scale. The decrease in corrosion rate with increasing Nb content may be attributed to the presence of increasing amounts of Ni-Nb double sulfides as well as to the presence of Nb2O5 in the inner region of the scale.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 39 (1993), S. 197-209 
    ISSN: 1573-4889
    Keywords: oxidation ; binary alloys ; two-phase alloys
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The corrosion behavior of binary, two-phase alloys is considered in which the matrix contains mostly the less-noble metal that forms a fast-growing oxide, while the second phase is rich in a component that forms a more stable but slowly-growing oxide. It is assumed that the second phase exists as a dispersion of isolated, rod-like particles. It is further assumed that both phases form external films with no internal oxidation. It is shown that the oxidation behavior of this type of alloy depends on both the oxidation time and the size of the second-phase particles. In particular, for short oxidation times and large second-phase particles the matrix will oxidize faster than the dispersed phase, so that the dispersed particles will be only partly corroded or even incorporated into the matrix-oxide scale as unoxidized islands, forming an irregular alloy-scale interface. On the contrary, for long times and small particle sizes the two phases will tend to oxidize at approximately the same rate, leading to the formation of regular alloy-scale interfaces. The time for the transition between the two corrosion regimes depends not only on the ratio between the rate constants for the growth of the two oxides but also on the size of the dispersed-phase particles, smaller sizes producing shorter transition times. Eventually, under favorable conditions the formation of the fast-growing oxide may even stop, leading to the formation of a protective layer of the most-stable oxide.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1573-4889
    Keywords: two-phase alloys ; oxidation ; scale structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The main possible modes of the high-temperature corrosion of binary twophase alloys by a single oxidant under gas-phase pressures sufficient to corrode both alloy components are examined to highlight the differences in their behavior with respect to single-phase alloys. It is shown that in the absence of important diffusion processes of the metal components in the alloy the expected scale structures are significantly different from those typical of single-phase alloys. The effects due to the existence of different degrees of deviation from equilibrium as a result of kinetics hindrances for the formation of the most stable oxide and in the absence of alloy diffusion are then examined. It is also shown that when diffusion in the alloy becomes important the alloy may develop an outer single-phase layer depleted in the most-reactive component, which may lead to various possible scale structures. The conditions for the transition between the various oxidation modes as well as the effect of the various parameters of kinetics, thermodynamic and structural nature over the corrosion behavior of two-phase alloys are also examined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 43 (1995), S. 379-394 
    ISSN: 1573-4889
    Keywords: two-phase alloys ; oxidation ; scale structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The main possible modes of the high-temperature corrosion of binary two-phase alloys by a single oxidant under gas-phase pressures sufficient to corrode only the most-reactive alloy component are examined to compare their behavior with that of single-phase alloys. In the absence of important diffusion processes of the metal components in the alloy, the scale structures expected are different from those typical of single-phase alloys. Moreover, when diffusion in the alloy becomes important, these systems may develop an outer single-phase layer depleted in the most-reactive component, which may lead to different possible scale structures. The conditions for the transition between the various oxidation modes as well as the effect of the various parameters of kinetic, thermodynamic, and structural nature over the corrosion behavior of two-phase alloys are also examined.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 43 (1995), S. 527-542 
    ISSN: 1573-4889
    Keywords: Co−Nb alloys ; high temperature ; oxidation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The oxidation of two Co−Nb alloys containing 15 and 30 wt.% Nb has been studied at 600–800° C in H2−CO2 mixtures providing an oxygen pressure of 10−24 atm at 600°C and 10−20 atm at 700 and 800°C, below the dissociation pressure of cobalt oxide. At 600 and 700°C both alloys showed only a region of internal oxidation composed, of a mixture of alpha cobalt and of niobium oxides (NbO2 and Nb2O5) and at 700°C also the double oxide CoNb2O6, which formed from the Nb-rich Co3Nb phase. No Nb-depleted layer formed in the alloy at the interface with the region of internal oxidation at these temperatures. Upon oxidation at 800°C a transition between internal and external oxidation of niobium was observed, especially for Co−30Nb. This corrosion mode is associated with the development of a single-phase, Nb-depleted region at the surface of the alloy. The corrosion mechanism of these alloys is examined with special reference to the effect of the low solubility of niobium in cobalt and to the relation between the microstructures of the alloys and of the scales.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 48 (1997), S. 357-380 
    ISSN: 1573-4889
    Keywords: chromium ; copper ; binary alloys ; two-phase alloys ; oxidation ; high temperatures
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The oxidation in air of three two phase Cu-Cr alloys with nominal Cr contents of 25, 50, and 75 wt. % was studied at 700–900°C. The alloys corroded nearly parabolically, except at 900°C, when the corrosion rates decreased with time more rapidly than predicted by the parabolic rate law. The corrosion rate decreased for higher Cr contents in the alloy under constant temperature and generally increased with temperature for the same alloy composition. The scales were complex and consisted in most cases of an outermost copper oxide layer free from chromium and an inner layer composed of a matrix of copper oxide or of the double oxide Cu2Cr2O4, often containing particles of chromium metal surrounded by chromia and then by the double oxide. Metallic copper was also frequently mixed with chromia. Cr-rich regions tended to form continuous chromia layers at the base of the scale, especially at the highest temperature. No chromium depletion was observed in the alloy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 13 (1979), S. 181-195 
    ISSN: 1573-4889
    Keywords: copper-manganese alloys ; oxidation ; scale composition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The oxidation behavior of copper-manganese alloys (2–35 wt. % Mn) in pure oxygen at 760 Torr was investigated at 100° intervals between 550 and 850°C. Gravimetric measurements of the oxidation kinetics have been combined with microstructural studies of the reacted samples in order to evaluate the reaction mechanisms. The scales formed on Cu-2Mn, Cu-5Mn, Cu-10Mn are always composed of three different layers; in any case manganese is present only in the inner layer. The scales formed on Cu-20Mn and Cu-35Mn are composed of two layers, both containing manganese, with a more Cu-rich outer layer. In all the samples internal oxidation in combination with external scale formation is observed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...