ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • osteocalcin  (9)
  • osteoblast differentiation  (5)
  • 1
    ISSN: 0730-2312
    Keywords: osteocalcin ; osteopontin ; collagen ; c-fos ; oncogene ; histone ; fibronectin ; alkaline phosphatase ; collagenase ; steroid hormone ; growth control ; osteoblast differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: To understand the mechanisms by which glucocorticoids promote differentiation of fetal rat calvaria derived osteoblasts to produce bone-like mineralized nodules in vitro, a panel of osteoblast growth and differentiation related genes that characterize development of the osteoblast phenotype has been quantitated in glucocorticoid-treated cultures. We compared the mRNA levels of osteoblast expressed genes in control cultures of subcultivated cells where nodule formation is diminished, to cells continuously (35 days) exposed to 10 -7 M dexamethasone, a synthetic glucocorticoid, which promotes nodule formation to levels usually the extent observed in primary cultures. Tritiated thymidine labelling revealed a selective inhibition of internodule cell proliferation and promotion of proliferation and differentiation of cells forming bone nodules. Fibronectin, osteopontin, and c-fos expression were increased in the nodule forming period. Alkaline phosphatase and type I collagen expression were initially inhibited in proliferating cells, then increased after nodule formation to support further growth and mineralization of the nodule. Expression of osteocalcin was 1,000-fold elevated in glucocorticoid-differentiated cultures in relation to nodule formation. Collagenase gene expression was also greater than controls (fivefold) with the highest levels observed in mature cultures (day 35). At this time, a rise in collagen and TGFβ was also observed suggesting turnover of the matrix. Short term (48 h) effects of glucocorticoid on histone H4 (reflecting cell proliferation), alkaline phosphatase, osteopontin, and osteocalcin mRNA levels reveal both up or down regulation as a function of the developmental stage of the osteoblast phenotype. A comparison of transcriptional levels of these genes by nuclear run-on assay to mRNA levels indicates that glucocorticoids exert both transcriptional and post-transcriptional effects. Further, the presence of glucocorticoids enhances the vitamin D3 effect on gene expression. Those genes which are upregulated by 1,25(OH)2D3 are transcribed at an increased rate by dexamethasone, while those genes which are inhibited by vitamin D3 remain inhibited in the presence of dexamethasone and D3. We propose that the glucocorticoid promote changes in gene expression involved in cell-cell and cell-extracellular matrix signaling mechanism that support the growth and differentiation of cells capable of osteoblast phenotype development and bone tissue-like organization, while inhibiting the growth of cells that cannot progress to the mature osteoblast phenotype in fetal rat calvarial cultures. © 1992 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: osteocalcin ; homeodomain protein ; osteoblasts ; transcriptional regulation ; bone specific ; developmental ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Osteocalcin is a 6 kD tissue-specific calcium binding protein associated with the bone extracellular matrix. The osteocalcin gene is developmentally expressed in postproliferative rat osteoblasts with regulation at least in part at the transcriptional level. Multiple, basal promoter and enhancer elements which control transcriptional activity in response to physiological mediators, including steroid hormones, have been identified in the modularly organized osteocalcin gene promoter. The osteocalcin box (OC box) is a highly conserved basal regulatory element residing between nucleotides -99 and -76 of the proximal promoter. We recently established by in vivo competition analysis that protein interactions at the CCAAT motif, which is the central core of the rat OC box, are required for support of basal transcription [Heinrichs et al. J Cell Biochem 53:240-250, 1993]. In this study, by the combined utilization of electrophoretic mobility shift analysis, UV cross linking, and DNA affinity chromatography, we have identified a protein that binds to the rat OC box. Results are presented that support involvement of the OC box-binding protein in regulating selective expression of the osteocalcin gene during differentiation of the rat osteoblast phenotype and suggest that this protein is tissue restricted.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0730-2312
    Keywords: oncogenes ; osteoblasts ; osteocalcin ; alkaline phosphatase ; collagen ; transcription ; gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: There is a generalized reciprocal relationship between cell growth and expression of genes that occurs following completion of proliferation, which supports the progressive development of cell and tissue phenotypes. Molecular mechanisms which couple the shutdown of proliferation with initiation of tissue-specific gene transcription have been addressed experimentally in cultures of primary diploid osteoblasts that undergo a growth and differentiation developmental sequence. Evidence is presented for a model which postulates that genes transcribed post-proliferatively are suppressed during cell growth by binding of the Fos/Jun protein complex to AP-1 Promoter sites associated with vitamin D responsive elements of several genes encoding osteoblast phenotype markers (Type I collagen, alkaline phosphatase, osteocalcin).
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 55 (1994), S. 190-199 
    ISSN: 0730-2312
    Keywords: osteoclast ; osteocalcin ; bone marrow ; differentiation ; resorption ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Murine long-term bone marrow cultures (LTBMCs) were used to generate hematopoietic cells free from marrow stromal cells. These progenitor cells were treated with GM-CSF (5 U/ml) with or without rat bone osteocalcin or rat serum albumin in either α-MEM with 2% heat-inactivated horse serum alone (α) or supplemented with 10% L-cell-conditioned medium (as a source of M-CSF) (L10). Few substrate-attached cells survived in basal α medium, but when treated with L10 medium or GM-CSF, they survived and proliferated. Osteocalcin did not significantly affect survival or proliferation. Subcultures of cells treated with GM-CSF had large numbers of multinucleated cells, more than half of which were tartrate-resistant acid phosphatase-positive (TRAP). Osteocalcin further promoted the development of TRAP-positive multinucleated cells; a dose of 0.7 μg/ml osteocalcin promoted osteoclastic differentiation by 60%. Using a novel microphotometric assay, we detected significantly more tartrate-resistant acid phosphatase activity in the osteocalcin plus GM-CSF group (75.6 ± 14.2) than in GM-CSF alone (53.3 ± 7.3). In the absence of M-CSF, GM-CSF stimulated tartrate-resistant acid phosphatase activity, but osteocalcin did not have an additional effect. These studies indicate that osteocalcin promotes osteoclastic differentiation of a stromal-free subpopulation of hematopoietic progenitors in the presence of GM-CSF and L-cell-conditioned medium. These results are consistent with the hypothesis that this bone-matrix constituent plays a role in bone resorption. © 1994 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 49 (1992), S. 37-45 
    ISSN: 0730-2312
    Keywords: differentiation ; osteocalcin ; osteoblast ; vitamin D ; responsive element ; promoter elements ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Vitamin D is a physiological regulator of gene transcription associated with control of a broad spectrum of biological processes that include but is not restricted to growth, differentiation and calcium-mediated homeostatic control. Transcriptional regulation is mediated by sequence-specific interactions of a 1,25(OH)2D3-vitamin D receptor-accessory factor complex with vitamin D responsive elements (VDRE) residing in the promoters of hormone responsive genes. Functioning primarily as a transcription enhancer, activity at the VDRE is controlled by diverse and integrated cellular signalling pathways acting synergistically and/or antagonistically with a series of basal regulatory elements and other hormone regulated sequences that are components of modularly organized vitamin D-responsive gene promoters. Molecular mechanisms that integrate the activities at promoter elements contributing to vitamin D-related transcriptional control include overlapping transcription factor binding domains within regulatory elements and cooperative activities at independent regulatory sequences that determine the level of vitamin D responsiveness.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0730-2312
    Keywords: osteocalcin ; histone ; osteopontin ; vitamin D ; transcription ; oncogene ; chromatin structure ; nuclear matrix ; tumor cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Primary cultures of calvarial derived normal diploid osteoblasts undergo a developmental expression of genes reflecting growth, extracellular matrix maturation, and mineralization during development of multilayered nodules having a bone tissue-like organization. Scanning electron microscopy of the developing cultures indicates the transition from the uniform distribution of cuboidal osteoblasts to multilayered nodules of smaller cells with a pronounced orientation of perinodular cells towards the apex of the nodule. Ultrastructural analysis of the nodule by transmission electron microscopy indicates that the deposition of mineral is confined to the extracellular matrix where cells appear more osteocytic. The cell body contains rough endoplasmic reticulum and golgi, while these intracellular organelles are not present in the developing cellular processes. To understand the regulation of temporally expressed genes requires an understanding of which genes are selectively expressed on a single cell basis as the bone tissue-like organization develops. In situ hybridization analysis using 35S labelled histone gene probes, together with 3H-thymidine labelling and autoradiography, indicate that greater than 98% of the pre-confluent osteoblasts are proliferating. By two weeks, both the foci of multilayered cells and internodular cell regions have down-regulated cell growth associated genes. Post-proliferatively, but not earlier, initial expression of both osteocalcin and osteopontin are restricted to the multilayered nodules where all cells exhibit expression. While total mRNA levels for osteopontin and osteocalcin are coordinately upregulated with an increase in mineral deposition, in situ hybridization has revealed that expression of osteocalcin and osteopontin occurs predominantly in cells associated with the developing nodules. In contrast, proliferating rat osteosarcoma cells (ROS 17/2.8) concomitantly express histone H4, along with osteopontin and osteocalcin. These in situ analyses of gene expression during osteoblast growth and differentiation at the single cell level establish that a population of proliferating calvarial-derived cells subsequently expresses osteopontin and osteocalcin in cells developing into multilayered nodules with a tissue-like organization.
    Additional Material: 10 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 54 (1994), S. 231-238 
    ISSN: 0730-2312
    Keywords: bone ; osteocalcin ; alkaline phosphatase ; differentiation ; halogenated hydrocarbons ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The influence of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent halogenated aromatic hydrocarbon, on the development of bone tissue-like organization in primary cultures of normal diploid calvarial-derived rat osteoblasts was examined. Initially, when placed in culture, these cells actively proliferate while expressing genes associated with biosynthesis of the bone extracellular matrix. Then, post-proliferatively, genes are expressed that render the osteoblast competent for extracellular matrix mineralization and maintenance of structural as well as functional properties of the mature bone-cell phenotype. Our results indicate that, in the presence of TCDD, proliferation of osteoblasts was not inhibited but post-confluent formation of multicellular nodules that develop bone tissue-like organization was dramatically suppressed. Consistent with TCDD-mediated abrogation of bone nodule formation, expression of alkaline phosphatase and osteocalcin was not upregulated post-proliferatively. These findings are discussed within the context of TCDD effects on estrogens and vitamin D-responsive developmental gene expression during osteoblast differentiation and, from a broader biological perspective, on steroid hormone control of differentiation.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0730-2312
    Keywords: immortalized ; clonal ; alkaline phosphatase ; osteocalcin ; mineralization ; vitamin D3 ; dexamethasone ; parathyroid hormone ; interleukin-6 ; bone ; osteoporosis ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Osteoblasts are established targets of estrogen action in bone. We screened 66 conditionally immortalized clonal human osteoblast cell lines for estrogen receptors (ERs) using reverse transcriptase-polymerase chain reaction (RT-PCR) analysis for ERα mRNA and transactivation of adenovirus-estrogen response element (ERE)-tk-luciferase by 17β-estradiol (17β-E2) for functional ER protein. One of these cell lines, termed HOB-03-CE6, was chosen for further characterization. The cells, which were conditionally immortalized with a temperature-sensitive SV40 large T antigen, proliferated at the permissive temperature (34°C) but stopped dividing at the nonpermissive temperature (&ge 39°C). Alkaline phosphatase activity and osteocalcin secretion were upregulated by 1&agr 25-dihydroxyvitamin D3 in a dose-dependent manner. The cells also expressed type I collagen and other bone matrix proteins, secreted a variety of growth factors and cytokines, formed mineralized nodules based on alizarin red-S and von Kossa histochemical staining, and responded to dexamethasone, all-trans retinoic acid, and transforming growth factor-β1. This cell line expressed 42-fold less ER message than MCF-7 human breast cancer cells, as determined by quantitative RT-PCR. However, adenovirus-ERE-tk-luciferase activity was upregulated three- to fivefold in these cells by 17β-E2 with an EC50 of 64 pM. Furthermore, this upregulation was suppressed by co-treatment with the anti-estrogen ICI-182, 780. Cytosolic extracts of these cells specifically bound [125I]-17β-E2 in a concentration-dependent manner with a Bmax of 2.7 fmoles/mg protein (∼ 1,200 ERs/cell) and a Kd of 0.2 nM. DNA gel-shift analysis using a [32P]-ERE demonstrated the presence of ERs in nuclear extracts of these cells. Moreover, binding of the extracts to this ERE was blocked by a monoclonal antibody to the human ER DNA-binding domain. We evaluated these cells for 14 of 20 reported endogenous responses to 17β-E2 in osteoblasts. Although most of these responses appeared to be unaffected by the steroid, 17β-E2 suppressed parathyroid hormone-induced cAMP production, as well as basal interleukin-6 mRNA expression; conversely, the steroid upregulated the steady-state expression of alkaline phosphatase message in these cells. In summary, we have identified a clonal, conditionally phenotypic, human osteoblast cell line that expresses functional ERs and exhibits endogenous responses to 17β-E2. This cell line will be a valuable in vitro model for exploring some of the molecular mechanisms of estrogen action in bone. J. Cell. Biochem. 65:368-387. © 1997 Wiley-Liss, Inc.
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 72 (1998), S. 62-72 
    ISSN: 0730-2312
    Keywords: osteocalcin gene ; osteoblast growth ; osteoblast differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The bone tissue-specific osteocalcin gene remains one of a few genes that exhibits osteoblast-restricted expression. Over the last decade, characterization of the promoter regulatory elements and complexes of factors that control suppression of the osteocalcin gene in osteoprogenitor cells and transactivation in mature osteoblasts has revealed transcriptional regulatory mechanisms that mediate development of the osteoblast phenotype. In this review, we have focused on emerging concepts related to molecular mechanisms supporting osteoblast growth and differentiation based on the discoveries that the osteocalcin gene is regulated by homeodomain factors, AP-1 related proteins, and the bone restricted Cbfa1/AML3 transcription factor. J. Cell. Biochem. Suppls. 30/31:62-72, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 1 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0730-2312
    Keywords: AML-3 ; transcription factors ; partitioning ; osteoblast differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The subnuclear location of transcription factors may functionally contribute to the regulation of gene expression. Several classes of gene regulators associate with the nuclear matrix in a cell type, cell growth, or cell cycle related-manner. To understand control of nuclear matrix-transcription factor interactions during tissue development, we systematically analyzed the subnuclear partitioning of a panel of transcription factors (including NMP-1/YY-1, NMP-2/AML, AP-1, and SP-1) during osteoblast differentiation using biochemical fractionation and gel shift analyses. We show that nuclear matrix association of the tissue-specific AML transcription factor NMP-2, but not the ubiquitous transcription factor YY1, is developmentally upregulated during osteoblast differentiation. Moreover, we show that there are multiple AML isoforms in mature osteoblasts, consistent with the multiplicity of AML factors that are derived from different genes and alternatively spliced cDNAs. These AML isoforms include proteins derived from the AML-3 gene and partition between distinct subcellular compartments. We conclude that the selective partitioning of the YY1 and AML transcription factors with the nuclear matrix involves a discriminatory mechanism that targets different classes and specific isoforms of gene regulatory factors to the nuclear matrix at distinct developmental stages. Our results are consistent with a role for the nuclear matrix in regulating the expression of bone-tissue specific genes during development of the mature osteocytic phenotype. J. Cell. Biochem. 66:123-132, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...