ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • osteoblasts  (8)
  • proliferation  (4)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 13 (1992), S. 247-265 
    ISSN: 0197-8462
    Keywords: proliferation ; differentiation ; cell phenotype ; tissue culture ; molecular biology ; cell biology ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: The potential biological effects of electric and/or magnetic fields on cells and tissues must be addressed systematically within a context of perturbations in cell cycle control. Such studies should not be pursued in an isolated manner but as a component of the fundamental relationship between proliferation and differentiation, the multi-step process by which structural and functional properties of specialized cells, tissues, and organs progressively develop. It is necessary to quantitatively establish the influence of electric and magnetic fields on the integrated signalling mechanisms which transduce regulatory information for 1) control of the proliferative process and 2) down-regulation of proliferation associated with the initiation of gene expression that mediates the development and maintenance of phenotypic properties characteristic of differentiated cells. We will present an overview of our current understanding of regulatory mechanisms that control proliferation and cell specialization in normal diploid cells with emphasis on rate limiting steps that may be the basis for biological perturbations by electric and magnetic fields. Addressing such questions in normal diploid cells is essential since the loss of growth control in transformed and tumor cells is accompanied by an abrogation of developmental regulatory mechanisms that are functionally coupled to proliferation. 1992 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: osteocalcin ; homeodomain protein ; osteoblasts ; transcriptional regulation ; bone specific ; developmental ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Osteocalcin is a 6 kD tissue-specific calcium binding protein associated with the bone extracellular matrix. The osteocalcin gene is developmentally expressed in postproliferative rat osteoblasts with regulation at least in part at the transcriptional level. Multiple, basal promoter and enhancer elements which control transcriptional activity in response to physiological mediators, including steroid hormones, have been identified in the modularly organized osteocalcin gene promoter. The osteocalcin box (OC box) is a highly conserved basal regulatory element residing between nucleotides -99 and -76 of the proximal promoter. We recently established by in vivo competition analysis that protein interactions at the CCAAT motif, which is the central core of the rat OC box, are required for support of basal transcription [Heinrichs et al. J Cell Biochem 53:240-250, 1993]. In this study, by the combined utilization of electrophoretic mobility shift analysis, UV cross linking, and DNA affinity chromatography, we have identified a protein that binds to the rat OC box. Results are presented that support involvement of the OC box-binding protein in regulating selective expression of the osteocalcin gene during differentiation of the rat osteoblast phenotype and suggest that this protein is tissue restricted.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0730-2312
    Keywords: oncogenes ; osteoblasts ; osteocalcin ; alkaline phosphatase ; collagen ; transcription ; gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: There is a generalized reciprocal relationship between cell growth and expression of genes that occurs following completion of proliferation, which supports the progressive development of cell and tissue phenotypes. Molecular mechanisms which couple the shutdown of proliferation with initiation of tissue-specific gene transcription have been addressed experimentally in cultures of primary diploid osteoblasts that undergo a growth and differentiation developmental sequence. Evidence is presented for a model which postulates that genes transcribed post-proliferatively are suppressed during cell growth by binding of the Fos/Jun protein complex to AP-1 Promoter sites associated with vitamin D responsive elements of several genes encoding osteoblast phenotype markers (Type I collagen, alkaline phosphatase, osteocalcin).
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0730-2312
    Keywords: phosphorylation ; cell cycle ; proliferation ; transcription ; histone ; development ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cell cycle regulated gene expression was studied by analyzing protein/DNA interactions occurring at the H4-Site II transcriptional element of H4 histone genes using several approaches. We show that this key proximal promoter element interacts with at least three distinct sequence-specific DNA binding activities, designated HiNF-D, HiNF-M, and HiNF-P. HiNF-D binds to an extended series of nucleotides, whereas HiNF-M and HiNF-P recognize sequences internal to the HiNF-D binding domain. Gel retardation assays show that HiNF-D and HiNF-M each are represented by two distinct protein/DNA complexes involving the same DNA binding activity. These results suggest that these factors are subject to post-translational modifications. Dephosphorylation experiments in vitro suggest that both electrophoretic mobility and DNA binding activities of HiNF-D and HiNF-M are sensitive to phosphatase activity. We deduce that these factors may require a basal level of phosphorylation for sequence specific binding to H4-Site II and may represent phosphoproteins occurring in putative hyper- and hypo-phosphorylated forms. Based on dramatic fluctuations in the ratio of the two distinct HiNF-D species both during hepatic development and the cell cycle in normal diploid cells, we postulate that this modification of HiNF-D is related to the cell cycle. However, in several tumor-derived and transformed cell types the putative hyperphosphorylated form of HiNF-D is constitutively present. These data suggest that deregulation of a phosphatase-sensitive post-translational modification required for HiNF-D binding is a molecular event that reflects abrogation of a mechanism controlling cell proliferation. Thus, phosphorylation and dephosphosphorylation of histone promoter factors may provide a basis for modulation of protein/DNA interactions and H4 histone gene transcription during the cell cycle and at the onset of quiescence and differentiation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0730-2312
    Keywords: proliferation/differentiation ; transcription ; osteoblasts ; bone cell-related genes ; DNA synthesis inhibition ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Interrelationships between proliferation and expression of cell growth as well as bone cell-related genes were examined from two standpoints. First, the consequence of downregulating proliferation by DNA synthesis inhibition on expression of a cell cycle-regulated histone gene and genes associated with development of the bone cell phenotype (type I collagen, alkaline phosphatase, osteopontin, and osteocalcin) was investigated. Second, the requirement for stringent growth control to support functional relationships between expression of proliferation and differentiation-related genes was explored. Parameters of cell growth and osteoblast-related gene expression in primary cultures of normal diploid osteoblasts, that initially express proliferation-dependent genes and subsequently postproliferative genes associated with mature bone cell phenotypic properties, were compared to those operative in ROS 17/2.8 osteosarcoma cells that concomitantly express cell growth and mature osteoblast phenotypic genes. Our findings indicate that in both normal diploid osteoblasts and osteosarcoma cells, expression of the cell cycle regulated histone genes is tightly coupled with DNA synthesis and controlled predominantly at a posttranscriptional level. Inhibition of proliferation by blocking DNA synthesis with hydroxyurea upregulates a subset of developmentally expressed genes that postproliferatively support progressive establishment of mature osteoblast phenotypic properties (e.g., alkaline phosphatase, type I collagen, and osteopontin). However, the osteocalcin gene, which is expressed during the final stage of osteoblast differentiation when extracellular matrix mineralization occurs, is not upregulated. Variations in the extent to which inhibition of proliferation in normal diploid osteoblasts and in ROS 17/2.8 osteosarcoma cells selectively affects transcription and cellular levels of mRNA transcripts from bone cell-related genes (e.g., osteocalcin) may reflect modifications in proliferation/differentiation interrelationships when stringent growth control is abrogated.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0730-2312
    Keywords: HL-60 cells ; bone ; proliferation ; gene regulation ; hsp27 ; hsp60 ; hsp70 ; hsp89α ; hsp89β ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The progressive differentiation of both normal rat osteoblasts and HL-60 promyelocytic leukemia cells involves the sequential expression of specific genes encoding proteins that are characteristic of their respective developing cellular phenotypes. In addition to the selective expression of various phenotype marker genes, several members of the heat shock gene family exhibit differential expression throughout the developmental sequence of these two cell types. As determined by steady state mRNA levels, in both osteoblasts and HL-60 cells expression of hsp27, hsp60, hsp70, hsp89α, and hsp89β may be associated with the modifications in gene expression and cellular architecture that occur during differentiation.In both differentiation systems, the expression of hsp27 mRNA shows a 2.5-fold increase with the down-regulation of proliferation while hsp60 mRNA levels are maximal during active proliferation and subsequently decline post-proliferatively. mRNA expression of two members of the hsp90 family decreases with the shutdown of proliferation, with a parallel relationship between hsp89α mRNA levels and proliferation in osteoblasts and a delay in down-regulation of hsp89α mRNA levels in HL-60 cells and of hsp89β mRNA in both systems. Hsp70 mRNA rapidly increases, almost twofold, as proliferation decreases in HL-60 cells but during osteoblast growth and differentiation was only minimally detectable and showed no significant changes. Although the presence of the various hsp mRNA species is maintained at some level throughout the developmental sequence of both osteoblasts and HL-60 cells, changes in the extent to which the heat shock genes are expressed occur primarily in association with the decline of proliferative activity. The observed differences in patterns of expression for the various heat shock genes are consistent with involvement in mediating a series of regulatory events functionally related to the control of both cell growth and differentiation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 52 (1993), S. 171-182 
    ISSN: 0730-2312
    Keywords: caffeine ; bone matrix implants ; delayed ossification ; osteoblasts ; gene expression ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have addressed questions raised by the observation in fetal rats of delayed ossification induced by caffeine at maternal doses above 80 mg/kg body weight per day. The effect of caffeine on endochondral bone development and mineralization has been studied in an experimental model system of bone formation which involves implantation of demineralized bone particles (DBP) in subcutaneous pockets of young growing rats. Caffeine's effects on cellular events associated with endochondral ossification were examined directly by quantitating cellular mRNA levels of chondrocyte and osteoblast growth and differentiation markers in DBP implants from caffeine-treated rats harvested at specific stages of development (day 7 through day 15). Oral caffeine administration to rats implanted with DBP resulted in a dose dependent inhibition of the formation of cartilage tissue in the implants. Histologic examination of the implants revealed a decrease in the number of cells which were transformed to chondrocytes compared to control implants. Those cartilaginous areas that did form, however, proceeded through the normal sequelae of calcified cartilage and bone formation. At the 100 mg/kg dose, cellular levels of mRNA for histone, collagen type II, and TGFβ were all reduced by greater than 40% of control implants consistent with the histological findings. Alkaline phosphatase activity in the implants and mRNA levels for proteins reflecting the hypertrophic chondrocyte and bone phenotype, collagen type I and osteocalcin were markedly decreased compared to controls. Lower doses of 50 and 12.5 mg/kg caffeine also resulted in decreased cellular proliferation and transformation to cartilage histologically and reflected by significant inhibition of type II collagen mRNA levels (day 7). The effects of caffeine on gene expression observed in vivo during the period of bone formation (day 11 to day 15) in the DBP model were similar to the inhibited expression of H4, alkaline phosphatase, osteocalcin, and osteopontin found in fetal rat calvarial derived osteoblast cultures following 24 hour exposure of the cultures to 0.4 mM caffeine. Thus the observed delayed mineralization in the fetal skeleton associated with caffeine appears to be related to an inhibition of endochondral bone formation at the early stages of proliferation of undifferentiated mesenchymal cells to cartilage specific cells as well as at later stages of bone formation.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 0730-2312
    Keywords: osteoblasts ; proliferation ; growth control ; differential display ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Fetal rat calvarial-derived osteoblasts in vitro (ROB) reinitiate a developmental program from growth to differentiation concomitant with production of a bone tissue-like organized extracellular matrix. To identify novel genes which may mediate this sequence, we isolated total RNA from three stages of the cellular differentiation process (proliferation, extracellular matrix maturation, and mineralization), for screening gene expression by the differential mRNA display technique. Of 15 differentially displayed bands that were analyzed by Northern blot analysis, one prominent 310 nucleotide band was confirmed to be proliferation-stage specific. Northern blot analysis showed a 600-650 nt transcript which was highly expressed in proliferating cells and decreased to trace levels after confluency and throughout the differentiation process. We have designated this transcript PROM-1 (for proliferating cell marker). A full length PROM-1 cDNA of 607 bp was obtained by 5′ RACE. A short open reading frame encoded a putative 37 amino acid peptide with no significant similarity to known sequences. Expression of PROM-1 in the ROS 17/2.8 osteosarcoma cell line was several fold greater than in normal diploid cells and was not downregulated when ROS 17/2.8 cells reached confluency. The relationship of PROM-1 expression to cell growth was also observed in diploid fetal rat lung fibroblasts. Hydroxyurea treatment of proliferating osteoblasts blocked PROM-1 expression; however, its expression was not cell cycle regulated. Upregulation of PROM-1 in response to TGF-β paralleled the stimulatory effects on growth as quantitated by histone gene expression. In conclusion, PROM-1 represents a small cytoplasmic polyA containing RNA whose expression is restricted to the exponential growth period of normal diploid cells; the gene appears to be deregulated in tumor derived cell lines. J. Cell. Biochem. 64:106-116. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 0730-2312
    Keywords: AML/CBF/PEBP2 ; regulatory element ; AML-3 ; osteoblasts ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The AML/CBFA family of runt homology domain (rhd) transcription factors regulates expression of mammalian genes of the hematopoietic lineage. AML1, AML2, and AML3 are the three AML genes identified to date which influence myeloid cell growth and differentiation. Recently, AML-related proteins were identified in an osteoblast-specific promoter binding complex that functionally modulates bone-restricted transcription of the osteocalcin gene. In the present study we demonstrate that in primary rat osteoblasts AML-3 is the AML family member present in the osteoblast-specific complex. Antibody specific for AML-3 completely supershifts this complex, in contrast to antibodies with specificity for AML-1 or AML-2. AML-3 is present as a single 5.4 kb transcript in bone tissues. To establish the functional involvement of AML factors in osteoblast differentiation, we pursued antisense strategies to alter expression of rhd genes. Treatment of osteoblast cultures with rhd antisense oligonucleotides significantly decreased three parameters which are linked to differentiation of normal diploid osteoblasts: the representation of alkaline phosphatase-positive cells, osteocalcin production, and the formation of mineralized nodules. Our findings indicate that AML-3 is a key transcription factor in bone cells and that the activity of rhd proteins is required for completion of osteoblast differentiation. J. Cell. Biochem. 66:1-8, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 0730-2312
    Keywords: AML/CBF/PEBP2 ; CBFa1 ; differentiation ; osteoblasts ; regulatory elements ; transforming growth factor-β ; receptor ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Organization of the transforming growth factor-β (TGF-β) type I receptor (TRI) promoter predicts constitutive transcription, although its activity increases with differentiation status in cultured osteoblasts. Several sequences in the rat TRI promoter comprise cis-acting elements for CBFa (AML/PEBP2α) transcription factors. By gel mobility shift and immunological analyses, a principal osteoblast-derived nuclear factor that binds to these sites is CBFa1(AML-3/PEBP2αA). Rat CBFa1 levels parallel expression of the osteoblast phenotype and increase under conditions that promote mineralized bone nodule formation in vitro. Fusion of CBFa binding sequence from the TRI promoter to enhancer-free transfection vector increases reporter gene expression in cells that possess abundant CBFa1, and overexpression of CBFa increase the activity of transfected native TRI promoter/reporter plasmid. Consequently, phenotype-restricted use of cis-acting elements for CBFa transcription factors can contribute to the high levels of TRI that parallel osteoblast differentiation and to the potent effects of TGF-β on osteoblast function. J. Cell. Biochem. 69:353-363. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...