ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0730-2312
    Keywords: osteocalcin ; homeodomain protein ; osteoblasts ; transcriptional regulation ; bone specific ; developmental ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Osteocalcin is a 6 kD tissue-specific calcium binding protein associated with the bone extracellular matrix. The osteocalcin gene is developmentally expressed in postproliferative rat osteoblasts with regulation at least in part at the transcriptional level. Multiple, basal promoter and enhancer elements which control transcriptional activity in response to physiological mediators, including steroid hormones, have been identified in the modularly organized osteocalcin gene promoter. The osteocalcin box (OC box) is a highly conserved basal regulatory element residing between nucleotides -99 and -76 of the proximal promoter. We recently established by in vivo competition analysis that protein interactions at the CCAAT motif, which is the central core of the rat OC box, are required for support of basal transcription [Heinrichs et al. J Cell Biochem 53:240-250, 1993]. In this study, by the combined utilization of electrophoretic mobility shift analysis, UV cross linking, and DNA affinity chromatography, we have identified a protein that binds to the rat OC box. Results are presented that support involvement of the OC box-binding protein in regulating selective expression of the osteocalcin gene during differentiation of the rat osteoblast phenotype and suggest that this protein is tissue restricted.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: phosphorylation ; cell cycle ; proliferation ; transcription ; histone ; development ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Cell cycle regulated gene expression was studied by analyzing protein/DNA interactions occurring at the H4-Site II transcriptional element of H4 histone genes using several approaches. We show that this key proximal promoter element interacts with at least three distinct sequence-specific DNA binding activities, designated HiNF-D, HiNF-M, and HiNF-P. HiNF-D binds to an extended series of nucleotides, whereas HiNF-M and HiNF-P recognize sequences internal to the HiNF-D binding domain. Gel retardation assays show that HiNF-D and HiNF-M each are represented by two distinct protein/DNA complexes involving the same DNA binding activity. These results suggest that these factors are subject to post-translational modifications. Dephosphorylation experiments in vitro suggest that both electrophoretic mobility and DNA binding activities of HiNF-D and HiNF-M are sensitive to phosphatase activity. We deduce that these factors may require a basal level of phosphorylation for sequence specific binding to H4-Site II and may represent phosphoproteins occurring in putative hyper- and hypo-phosphorylated forms. Based on dramatic fluctuations in the ratio of the two distinct HiNF-D species both during hepatic development and the cell cycle in normal diploid cells, we postulate that this modification of HiNF-D is related to the cell cycle. However, in several tumor-derived and transformed cell types the putative hyperphosphorylated form of HiNF-D is constitutively present. These data suggest that deregulation of a phosphatase-sensitive post-translational modification required for HiNF-D binding is a molecular event that reflects abrogation of a mechanism controlling cell proliferation. Thus, phosphorylation and dephosphosphorylation of histone promoter factors may provide a basis for modulation of protein/DNA interactions and H4 histone gene transcription during the cell cycle and at the onset of quiescence and differentiation.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0730-2312
    Keywords: proliferation/differentiation ; transcription ; osteoblasts ; bone cell-related genes ; DNA synthesis inhibition ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Interrelationships between proliferation and expression of cell growth as well as bone cell-related genes were examined from two standpoints. First, the consequence of downregulating proliferation by DNA synthesis inhibition on expression of a cell cycle-regulated histone gene and genes associated with development of the bone cell phenotype (type I collagen, alkaline phosphatase, osteopontin, and osteocalcin) was investigated. Second, the requirement for stringent growth control to support functional relationships between expression of proliferation and differentiation-related genes was explored. Parameters of cell growth and osteoblast-related gene expression in primary cultures of normal diploid osteoblasts, that initially express proliferation-dependent genes and subsequently postproliferative genes associated with mature bone cell phenotypic properties, were compared to those operative in ROS 17/2.8 osteosarcoma cells that concomitantly express cell growth and mature osteoblast phenotypic genes. Our findings indicate that in both normal diploid osteoblasts and osteosarcoma cells, expression of the cell cycle regulated histone genes is tightly coupled with DNA synthesis and controlled predominantly at a posttranscriptional level. Inhibition of proliferation by blocking DNA synthesis with hydroxyurea upregulates a subset of developmentally expressed genes that postproliferatively support progressive establishment of mature osteoblast phenotypic properties (e.g., alkaline phosphatase, type I collagen, and osteopontin). However, the osteocalcin gene, which is expressed during the final stage of osteoblast differentiation when extracellular matrix mineralization occurs, is not upregulated. Variations in the extent to which inhibition of proliferation in normal diploid osteoblasts and in ROS 17/2.8 osteosarcoma cells selectively affects transcription and cellular levels of mRNA transcripts from bone cell-related genes (e.g., osteocalcin) may reflect modifications in proliferation/differentiation interrelationships when stringent growth control is abrogated.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 0730-2312
    Keywords: gene expression ; transcription ; histone gene ; cell cycle ; development ; DNA/protein interaction ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Protein/DNA interactions of the H3-ST519 histone gene promoter were analyzed in vitro. Using several assays for sequence specificity, we established binding sites for ATF/AP1-, CCAAT-, and HiNF-D related DNA binding proteins. These binding sites correlate with two genomic protein/DNA interaction domains previously established for this gene. We show that each of these protein/DNA interactions has a counterpart in other histone genes: H3-ST519 and H4-F0108 histone genes interact with ATF- and HiNF-D related binding activities, whereas H3-ST519 and H1-FNC16 histone genes interact with the same CCAAT-box binding activity. These factors may function in regulatory coupling of the expression of different histone gene classes. We discuss these results within the context of established and putative protein/DNA interaction sites in mammalian histone genes. This model suggests that heterogeneous permutations of protein/DNA interaction elements, which involve both general and cell cycle regulated DNA binding proteins, may govern the cellular competency to express and coordinately control multiple distinct histone genes.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0730-2312
    Keywords: osteoblasts ; proliferation ; growth control ; differential display ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Fetal rat calvarial-derived osteoblasts in vitro (ROB) reinitiate a developmental program from growth to differentiation concomitant with production of a bone tissue-like organized extracellular matrix. To identify novel genes which may mediate this sequence, we isolated total RNA from three stages of the cellular differentiation process (proliferation, extracellular matrix maturation, and mineralization), for screening gene expression by the differential mRNA display technique. Of 15 differentially displayed bands that were analyzed by Northern blot analysis, one prominent 310 nucleotide band was confirmed to be proliferation-stage specific. Northern blot analysis showed a 600-650 nt transcript which was highly expressed in proliferating cells and decreased to trace levels after confluency and throughout the differentiation process. We have designated this transcript PROM-1 (for proliferating cell marker). A full length PROM-1 cDNA of 607 bp was obtained by 5′ RACE. A short open reading frame encoded a putative 37 amino acid peptide with no significant similarity to known sequences. Expression of PROM-1 in the ROS 17/2.8 osteosarcoma cell line was several fold greater than in normal diploid cells and was not downregulated when ROS 17/2.8 cells reached confluency. The relationship of PROM-1 expression to cell growth was also observed in diploid fetal rat lung fibroblasts. Hydroxyurea treatment of proliferating osteoblasts blocked PROM-1 expression; however, its expression was not cell cycle regulated. Upregulation of PROM-1 in response to TGF-β paralleled the stimulatory effects on growth as quantitated by histone gene expression. In conclusion, PROM-1 represents a small cytoplasmic polyA containing RNA whose expression is restricted to the exponential growth period of normal diploid cells; the gene appears to be deregulated in tumor derived cell lines. J. Cell. Biochem. 64:106-116. © 1997 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 0730-2312
    Keywords: AML/CBF/PEBP2 ; regulatory element ; AML-3 ; osteoblasts ; differentiation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The AML/CBFA family of runt homology domain (rhd) transcription factors regulates expression of mammalian genes of the hematopoietic lineage. AML1, AML2, and AML3 are the three AML genes identified to date which influence myeloid cell growth and differentiation. Recently, AML-related proteins were identified in an osteoblast-specific promoter binding complex that functionally modulates bone-restricted transcription of the osteocalcin gene. In the present study we demonstrate that in primary rat osteoblasts AML-3 is the AML family member present in the osteoblast-specific complex. Antibody specific for AML-3 completely supershifts this complex, in contrast to antibodies with specificity for AML-1 or AML-2. AML-3 is present as a single 5.4 kb transcript in bone tissues. To establish the functional involvement of AML factors in osteoblast differentiation, we pursued antisense strategies to alter expression of rhd genes. Treatment of osteoblast cultures with rhd antisense oligonucleotides significantly decreased three parameters which are linked to differentiation of normal diploid osteoblasts: the representation of alkaline phosphatase-positive cells, osteocalcin production, and the formation of mineralized nodules. Our findings indicate that AML-3 is a key transcription factor in bone cells and that the activity of rhd proteins is required for completion of osteoblast differentiation. J. Cell. Biochem. 66:1-8, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 0730-2312
    Keywords: differentiation ; osteoblasts ; cyclin E-associated kinase ; cyclin dependent kinase inhibitors ; RB related proteins ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Spontaneous differentiation of normal diploid osteoblasts in culture is accompanied by increased cyclin E associated kinase activity on (1) the retinoblastoma susceptibility protein pRB, (2) the p107 RB related protein, and (3) two endogenous cyclin E-associated substrates of 78 and 105 kD. Activity of the differentiation-related cyclin E complexes (diff.ECx) is not recovered in cdc2 or cdk2 immunoprecipitates. Phosphorylation of both the 105 kD endogenous substrate and the p107 exogenous substrate is sensitive to inhibitory activity (diff.ECx-i) present in proliferating osteoblasts. This inhibitory activity is readily recruited by the cyclin E complexes of differentiated osteoblasts but is not found in cyclin E immunoprecipitates of the proliferating cells themselves. Strong inhibitory activity on diff.ECx kinase activity is excerted by proliferating ROS 17/2.8 osteosarcoma cells. However, unlike the normal diploid cells, the diff.ECx-i activity of proliferating ROS 17/2.8 cells is recovered by cyclin E immunoprecipitation. The cyclin-dependent kinase inhibitor p21CIP1/WAF1 inhibits diff.ECx kinase activity. Thus, our results suggest the existence of a unique regulatory system, possibly involving p21CIP1/WAF1, in which inhibitory activity residing in proliferating cells is preferentially targeted towards differentiation-related cyclin E-associated kinase activity. J. Cell. Biochem. 66:141-152, 1997. © 1997 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...