ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of optimization theory and applications 86 (1995), S. 347-368 
    ISSN: 1573-2878
    Keywords: Cell-to-cell mapping ; coordinated robotic manipulators ; hierarchical searching algorithm ; optimal trajectory generation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mathematics
    Notes: Abstract This paper presents the results obtained by applying the cell-to-cell mapping method to solve the problem of the time-optimal trajectory planning for coordinated multiple robotic arms handling a common object along a specified geometric path. Based on the structure of the time-optimal trajectory control law, the continuous dynamic model of multiple arms is first approximated by a discrete and finite cell-to-cell mapping on a two-dimensional cell space over a phase plane. The optimal trajectory and the corresponding control are then determined by using the cell-to-cell mapping and a simple search algorithm. To further improve the computational efficiency and to allow for parallel computation, a hierarchical search algorithm consisting of a multiple-variable optimization on the top level and a number of cell-to-cell searches on the bottom level is proposed and implemented in the paper. Besides its simplicity, another distinguishing feature of the cell-to-cell mapping methods is the generation of all optimal trajectories for a given final state and all possible initial states through a single searching process. For most of the existing trajectory planning methods, the planning process can be started only when both the initial and final states have been specified. The cell-to-cell method can be generalized to any optimal trajectory planning problem for a multiple robotic arms system.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: Progress on a project for the development of a high-autonomy intelligent command and control architecture for process plants used to produce oxygen from local planetary resources is reported. A distributed command and control architecture is being developed and implemented so that an oxygen production plant, or other equipment, can be reliably commanded and controlled over an extended time period in a high-autonomy mode with high-level task-oriented teleoperation from one or several remote locations. During the reporting period, progress was made at all levels of the architecture. At the remote site, several remote observers can now participate in monitoring the plant. At the local site, a command and control center was introduced for increased flexibility, reliability, and robustness. The local control architecture was enhanced to control multiple tubes in parallel, and was refined for increased robustness. The simulation model was enhanced to full dynamics descriptions.
    Keywords: ENGINEERING (GENERAL)
    Type: NASA Space Engineering Research Center for Utilization of Local Planetary Resources; 20 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...