ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5028
    Keywords: Agrobacterium ; Ti plasmid ; oncogenes ; e gene ; 3′ gene
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Agrobacterium tumefaciens nopaline strain C58 transfers a large, 29 kb T-DNA into plant cells during infection. Part of this DNA (the `common DNA') is also found on the T-DNA of octopine strains, the remaining DNA is nopaline strain-specific. Up to now, only parts of the C58 T-DNA and related T37 T-DNA have been sequenced. We have sequenced the remainder of the nopaline-specific T-DNA (containing genes a to d) and acs to iaaM. Gene c codes for a new unknown T-DNA protein. Gene a is homologous to the agrocinopine synthase gene. Genes b, c′, d and e are part of a larger family: they are related to the T-DNA genes 5, rolB, lso and 3′. Genes 5, rolB and lso induce or modify plant growth and have been called T-DNA oncogenes. Our studies show that gene 3′ (located on the TR-DNA of octopine strains) is also oncogenic. Although the b–e T-DNA fragment from C58 and its individual genes lack growth-inducing activity, an a-acs deletion mutant was distinctly less virulent on Kalanchoe daigremontiana and showed reduced shoot formation on Kalanchoe tubiflora. Shoot formation could be restored by genes c and c′ in co-infection experiments. Contrary to an earlier report, a C58 e gene deletion mutant was fully virulent on all plants tested.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5028
    Keywords: Agrobacterium ; 6b gene ; oncogenes ; tumour induction ; wound-induced cell division
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The T-6b gene of Agrobacterium tumefaciens strain Tm4 induces tumours on Nicotiana rustica by an as yet unknown mechanism. These tumours cannot be regenerated into normal plants. To study the effect of the T-6b gene product on normal plant cells, the T-6b gene was placed under control of the Drosophila melanogaster hsp70 heat-shock promoter and introduced into N. rustica. Progeny of an hsp70-T-6b transformant developed into normal plants. The inducibility of the hsp70-T-6b construct was shown by northern analysis and by heat-shock-dependent growth alterations on the level of whole seedlings. Upon wounding at normal temperature conditions hsp70-T-6b plants formed small tumours on leaves and stems. Grafts between transformed plants and normal plants led to a wound callus which remained limited to transformed tissues, indicating that the T-6b gene product does not diffuse. Protoplasts of hsp70-T-6b plants divided in the same way as control protoplasts under standard culture conditions. However, when protoplast cultures were started in the absence of hormones, normal cells rapidly lost their sensitivity towards hormones, whereas hsp70-T-6b cells remained sensitive for a significantly longer period. Thus, the T-6b gene product alters hormone sensitivity during the initial phases of protoplast culture.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5028
    Keywords: Agrobacterium ; auxins ; roots ; oncogenes ; grapevine ; iaa genes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract A new type of root-inducing iaa gene set was cloned from the Ti plasmid of the biotype III Agrobacterium tumefaciens strain Tm-4. These iaa genes are characterized by a very low DNA homology with the well-characterized iaa gene set, iaaM and iaaH, of the “common DNA” region of the biotype I strain Ach5 and by a low root-inducing activity. The biological activities of both iaa gene sets were compared by transferring each into a disarmed Ti vector and by testing the resulting strains on Nicotiana rustica leaf discs, decapitated Datura stramonium stems, tomato plants and Kalanchoë daigremontiana. Tm-4 iaa genes have a reproducibly weaker root-inducing ability on Nicotiana rustica, induce very little tumour growth on decapitated Datura plants or on tomato plants and do not induce roots on Kalanchoë daigremontiana. The Tm-4 iaa region was mapped by λ:: Tn5 transposon mutagenesis and tested on Nicotiana rustica. These tests combined with complementation experiments map the iaa genes to a 4.5-kb region. The Tm-4 iaa genes were able to complement the corresponding Ach5 iaa genes on Nicotiana rustica, indicating that the differences between these genes are quantitative rather than qualitative. Complementation experiments on Kalanchoë showed the iaaM gene of Tm-4 responsible for the overall weak auxin activity of the intact iaa set. In view of the observed structural and functional differences we propose to call the Tm-4 iaa genes TB-iaaM and TB-iaaH and the Ach5 iaa genes A-iaaM and A-iaaH.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5028
    Keywords: crown gall ; iaa genes ; oncogenes ; Agrobacterium host range ; grapevine
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The ubiquitous grapevine-associated octopine/cucumopine Ti plasmids of biotype III Agrobacterium tumefaciens strains carry two T regions, TA and TB, with a complex oncogene arrangement. Within the octopine/cucumopine group, two main strain types were identified: ‘large TA’ strains with a TA region resembling the TL region of the biotype I octopine strain Ach5 and ‘small TA’ strains with a similar T region organization as the ‘large TA’ strains but with a large internal TA deletion. Structural and functional studies of the representative ‘large TA’ strain Tm4 revealed six oncogenes. Each oncogene was inserted in a disarmed vector and tested for biological activity using the corresponding oncogenes of Ach5 as standards. Five Tm4 oncogenes, TA-iaaM, T-ipt, T-6b, TB-iaaH and TB-iaaM, were shown to be active, the IS-interrupted TA-iaaH gene was inactive. To study the role of each gene in the pTiTm4 context, several single and multiple pTiTm4 mutations were constructed. It was shown that whereas TA-iaaM and TB-iaaH are essential for tumour formation on grapevine, T-ipt, T-6b and TB-iaaM are not. The avirulence of the TA-iaaM - mutant was shown to be due to an inhibitory effect of the T-ipt gene, since a TA-iaaM - /T-ipt - double mutant was fully virulent. We conclude that the TA-iaaM gene of ‘large TA’ strains is specifically required to counteract the tumour growth inhibiting activity of the T-ipt gene. Both TA-iaaM and T-ipt are absent from the ‘small TA’ strains. A model on the roles and interactions of the different oncogenes in ‘large TA’ and ‘small TA’ strains is presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...