ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Euthecosomatous pteropods  (1)
  • ocean governance, ocean acidification, climate change  (1)
Collection
Keywords
Publisher
Years
  • 1
    Publication Date: 2022-05-26
    Description: © The Author(s), 2017. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Earth-Science Reviews 169 (2017): 132–145, doi:10.1016/j.earscirev.2017.04.005.
    Description: The impact of anthropogenic ocean acidification (OA) on marine ecosystems is a vital concern facing marine scientists and managers of ocean resources. Euthecosomatous pteropods (holoplanktonic gastropods) represent an excellent sentinel for indicating exposure to anthropogenic OA because of the sensitivity of their aragonite shells to the OA conditions less favorable for calcification. However, an integration of observations, experiments and modelling efforts is needed to make accurate predictions of how these organisms will respond to future changes to their environment. Our understanding of the underlying organismal biology and life history is far from complete and must be improved if we are to comprehend fully the responses of these organisms to the multitude of stressors in their environment beyond OA. This review considers the present state of research and understanding of euthecosomatous pteropod biology and ecology of these organisms and considers promising new laboratory methods, advances in instrumentation (such as molecular, trace elements, stable isotopes, palaeobiology alongside autonomous sampling platforms, CT scanning and high-quality video recording) and novel field-based approaches (i.e. studies of upwelling and CO2 vent regions) that may allow us to improve our predictive capacity of their vulnerability and/or resilience. In addition to playing a critical ecological and biogeochemical role, pteropods can offer a significant value as an early-indicator of anthropogenic OA. This role as a sentinel species should be developed further to consolidate their potential use within marine environmental management policy making.
    Description: M.I. Berning is financed by the German Research Foundation Priority Programme 1158 Antarctic Research with Comparable Investigations in Arctic Sea Ice Areas (Project DFG-1158 SCHR 667/15-1).
    Keywords: Euthecosomatous pteropods ; Ocean acidification ; Calcifying organisms ; Marine ecosystem ; Carbonate chemistry
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-03-06
    Description: Despite the progress in the international and regional governance efforts at the level of climate change, ocean acidification (OA) remains a global problem with profoundly negative environmental, social, and economical consequences. This requires extensive mitigation and adaptation effective strategies that are hindered by current shortcomings of governance. This multidisciplinary chapter investigates the risks of ocean acidification (OA) for aquaculture and fisheries in the Mediterranean Sea and its sub-basins and the role of regional adaptive governance to tackle the problem. The identified risks are based on the biological sensitivities of the most important aquaculture species and biogenic habitats and their exposure to the current and future predicted (2100) RCP 8.5 conditions. To link OA exposure and biological sensitivity, we produced spatially resolved and depth-related pH and aragonite saturation state exposure maps and overlaid these with the existing aquaculture industry in the coastal waters of the Mediterranean basin to demonstrate potential risk for the aquaculture in the future. We also identified fisheries’ vulnerability through the indirect effects of OA on highly sensitive biogenic habitats that serve as nursery and spawning areas, showing that some of the biogenic habitats are already affected locally under existing OA conditions and will be more severely impacted across the entire Mediterranean basin under 2100 scenarios. This provided a regional vulnerability assessment of OA hotspots, risks and gaps that created the baseline for discussing the importance of adaptive governance and recommendations for future OA mitigation/adaptation strategies. By understanding the risks under future OA scenarios and reinforcing the adaptability of the governance system at the science-policy interface, best informed, “situated” management response capability can be optimised to sustain ecosystem services.
    Description: Published
    Description: 403–432
    Description: 4A. Oceanografia e clima
    Keywords: ocean governance, ocean acidification, climate change
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: book chapter
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...