ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Annales geophysicae 18 (2000), S. 1488-14501 
    ISSN: 0992-7689
    Keywords: Oceanography: general (limnology; numerical modeling) ; Oceanography: physical (internal and inertial waves)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We present results of various circulation scenarios for the wind-induced three-dimensional currents in Lake Constance, obtained with the aid of a semi-spectral semi-implicit finite difference code developed in Haidvogel et al. and Wang and Hutter. Internal Kelvin and Poincaré-type oscillations are demonstrated in the numerical results, whose periods depend upon the stratification and the geometry of the basin and agree well with measured data. By solving the eigenvalue problem of the linearized shallow water equations in the two-layered stratified Lake Constance, the interpretation of the oscillations as Kelvin and Poincaré-type waves is corroborated.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0992-7689
    Keywords: Oceanography: general (limnology; numerical modeling) ; Oceanography: physical (currents)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We study how a coastal obstruction (peninsula or coastal island) affects the three-dimensional barotropic currents in an oblong rectangular basin with variable bathymetry across the basin width. The transverse depth profile is asymmetric and the peninsula or island lies in the middle of the long side of the rectangle. A semi-spectral model for the Boussinesq-approximated shallow water equations, developed in Haidvogel et al. and altered for semi-implicit numerical integration in time in Wang and Hutter, is used to find the steady barotropic state circulation pattern to external winds. The structural (qualitative) rearrangements and quanti2tative features of the current pattern are studied under four principal wind directions and different lengths of the peninsula and its inclination relative to the shore. The essentially non-linear relationships of the water flux between the two sub-basins (formed by the obstructing peninsula) and the corresponding cross-sectional area left open are found and analysed. It is further analysed whether the depth-integrated model, usually adopted by others, is meaningful when applied to the water exchange problems. The flow through the channel narrowing is quantitatively estimated and compared with the three-dimensional results. The dynamics of the vortex structure and the identification of the up-welling/down-welling zones around the obstruction are discussed in detail. The influence of the transformation of the peninsula into a coastal island on the global basin circulation is considered as are the currents in the channel. The geometric and physical reasons for the anisotropy of the current structure which prevail through all obtained solutions are also discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Transport in porous media 34 (1999), S. 3-15 
    ISSN: 1573-1634
    Keywords: ice-till mixture ; thermodynamicconsistentform gravityshearflow ; gravityshearflow ; interfaceinteraction ; numericalsolutions.
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract The ice-till mixtures at the base of glaciers and ice sheets play a very important role in the movement of the glaciers and ice sheets. This mixture is modelled as an isothermal flow which is overlain by a layer of pure ice. In this model, ice is treated as usual as a very viscous fluid with a constant true density, while till, which is assumed to consist of sediment and bound (that is, moving with the sediment) interstitial water and/or ice, is also assumed in a first approximation to behave such as a fluid. For an isothermal flow below the melting point the water component can be neglected. Therefore, only the mass and momentum balances for till and ice are needed. To complete the model, no-slip and stress-free boundary conditions are assumed at the base and free-surface, respectively. The transition from the till-ice mixture layer to the overlying pure ice layer is idealized in the model as a moving interface representing in the simplest case the till material boundary, at which jump balance relations for till and ice apply. The mechanical interactions are considered in the mixture basel layer, as well as at the interface via the surface production. The interface mechanical interaction is supposed to be only a function of the volume fraction jump across the interface. In the context of the thin-layer approximation, numerical solutions of the lowest-order form of the model show a till distribution which is reminiscent to the ice-till layer in geophysical environment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...