ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • nucleus  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Earth, moon and planets 89 (2000), S. 135-160 
    ISSN: 1573-0794
    Keywords: C/1995 O1 (Hale-Bopp) ; 19P/Borrelly ; 46P/Wirtanen ; comets ; modeling ; nucleus ; observations ; rotation
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract We review several techniques used to retrieve rotational parameters from observations. The spin period of a dozen of comets retrieved with these techniques are summarized. We describe how the spin period of comet Hale-Bopp (C/1995 O1) has been calculated with a high accuracy (11.30–11.34 h). Although several authors converged to a spin axis orientation at (α,δ) = (275 ± 15°, -55 ± 5°), detailed studies indicate that the dust jets morphology in 1996–1997 may be incompatible with this orientation. Comet 19P/Borrelly has been recently observed by the Deep Space 1 spacecraft. At the same time, its spin axis orientation and period have been determined by several authors to be respectively (α,δ) = (225 ± 15°, -10 ± 10°)and 26h. These two comets are likely to be in (or close to) a principal axis spin state. We discuss new modeling of the spin state of comet 46P/Wirtanen, the target of the Rosetta mission. The model involves a three-dimensional shape and thermal model, from which the torque of the non gravitational force is calculated at each time step. The moments of inertia are computed for each irregular shape. The results from numerical integrations show that this comet can remain in a principal axis spin state during more than 10 orbits if the spin period does not get above∼6 h. If the spin period increases, its nucleus gets rapidly into excited spin states. It shows that even small and very active short-period comets are not necessarily in non principal axis spin states. In the last section, the consequences of recent observations and modeling of the rotational parameters of comet nuclei are discussed, and unsolved problems are presented.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...