ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-4978
    Keywords: chromatin structure ; differentiation ; nuclear matrix ; osteoblast ; transcription ; vitamin D
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Influences of promoter regulatory elements that are responsive to basal and tissue-restricted transactivation factors, steroid hormones, growth factors and other physiologic mediators has provided the basis for understanding regulatory mechanisms contributing to developmental expression of osteocalcin, tissue specificity and biological activity (reviewed in [1–3]). These regulatory elements and cognate transcription factors support postproliferative transcriptional activation and steroid hormone (e.g. vitamin D) enhancement at the onset of extracellular matrix mineralization during osteoblast differentiation. Three parameters of nuclear structure contribute to osteocalcin gene transcriptional control. The linear representation of promoter elements provides competency for physiological responsiveness within the contexts of developmental as well as phenotype-dependent regulation. Chromatin structure and nucleosome organization reduce distances between independent regulatory elements providing a basis for integrating components of transcriptional control. The nuclear matrix supports gene expression by imposing physical constraints on chromatin related to three dimensional genomic organization. In addition, the nuclear matrix facilitates gene localization as well as the concentration and targeting of transcription factors. Several lines of evidence are presented which are consistent with involvement of multiple levels of nuclear architecture in tissue-specific gene expression during differentiation. Growth factor and steroid hormone responsive modifications in chromatin structure, nucleosome organization and the nuclear matrix are considered which influence transcription of the bone tissue-specific osteocalcin gene during progressive expression of the osteoblast phenotype.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 54 (1994), S. 494-500 
    ISSN: 0730-2312
    Keywords: vitamin D ; nuclear matrix ; protein ; AP-1 ; NMP2 ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The subnuclear distribution of the vitamin D receptor was investigated to begin addressing the contribution of nuclear architecture to vitamin D-responsive control of gene expression in ROS 17/2.8 rat osteosarcoma cells. The nuclear matrix is an anastomosing network of filaments that is functionally associated with DNA replication, transcription, and RNA processing. The representation of vitamin D receptor in the nuclear matrix and nonmatrix nuclear fractions was determined by the combined application of (1) sequence-specific interactions with the vitamin D receptor binding element of the rat bone-specific osteocalcin gene promoter and (2) Western blot analysis. Both methods confirmed the presence of vitamin D receptor in the nonmatrix nuclear fraction and the absence of detectable vitamin D receptors associated with the nuclear matrix. In contrast, these same nuclear matrix proteins preparations exhibited association with the general transcription factor AP-1 and a bone tissue-specific promoter binding factor NMP2. NMP-2 exhibits recognition for a promoter domain contiguous to the vitamin D-responsive element of the osteocalcin gene, although the vitamin D receptor does not appear to be a component of the nuclear matrix proteins. Interrelationships between nuclear matrix proteins and nonmatrix nuclear proteins, in mediating steroid hormone responsiveness of a vitamin D-regulated promoter, are therefore suggested.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0730-2312
    Keywords: transcription factor ; nuclear matrix ; YY1 ; amino acids ; functional regulation ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The multifunctional transcription factor YY1 is associated with the nuclear matrix. In osteoblasts, the interaction of several nuclear matrix-associated transcription factors with the bone specific osteocalcin gene contributes to tissue-specific and steroid hormone-mediated transcription. A canonical nuclear matrix targeting signal (NMTS) is present in all members of the AML/CBFβ transcription factor family, but not in other transcription factors. Therefore, we defined sequences that direct YY1 (414 amino acids) to the nuclear matrix. A series of epitope tagged deletion constructs were expressed in HeLa S3 and in human Saos-2 osteosarcoma cells. Subcellular distribution was determined in whole cells and nuclear matrices in situ by immunofluorescence. We demonstrated that amino acids 257-341 in the C-terminal domain of YY1 are necessary for nuclear matrix association. We also observed that sequences within the N-terminal domain of YY1 permit weak nuclear matrix binding. Our data further suggest that the Gal4 epitope tag contains sequences that affect subcellular localization, but not targeting to the nuclear matrix. The targeted association of YY1 with the nuclear matrix provides an additional level of functional regulation for this transcription factor that can exhibit positive and negative control. J. Cell. Biochem. 68:500-510, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 291-303 
    ISSN: 0730-2312
    Keywords: nuclear matrix ; TGF-β1 ; bone ; osteoblast differentiation ; mineralization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Nuclear matrix protein (NMP) composition of osteoblasts shows distinct two-dimensional gel electrophoretic profiles of labeled proteins as a function of stages of cellular differentiation. Because NMPs are involved in the control of gene expression, we examined modifications in the representation of NMPs induced by TGF-β1 treatment of osteoblasts to gain insight into the effects of TGF-β on development of the osteoblast phenotype. Exposure of proliferating fetal rat calvarial derived primary cells in culture to TGF-β1 for 48 h (day 4-6) modifies osteoblast cell morphology and proliferation and blocks subsequent formation of mineralized nodules. Nuclear matrix protein profiles were very similar between control and TGF-β-treated cultures until day 14, but subsequently differences in nuclear matrix proteins were apparent in TGF-β-treated cultures. These findings support the concept that TGF-β1 modifies the final stage of osteoblast mineralization and alters the composition of the osteoblast nuclear matrix as reflected by selective and TGF-β-dependent modifications in the levels of specific nuclear matrix proteins. The specific changes induced by TGF-β in nuclear matrix associated proteins may reflect specialized mechanisms by which TGF-β signalling mediates the alterations in cell organization and nodule formation and/or the consequential block in extracellular mineralization. J. Cell. Biochem. 69:291-303, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 0730-2312
    Keywords: gene expression ; AML/CBF transcription factors ; nuclear matrix ; cancer ; nuclear domains ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Functional interrelationships between components of nuclear architecture and control of gene expression are becoming increasingly evident. In this article we focus on the concept that association of genes and cognate transcription factors with the nuclear matrix may support the formation and/or activities of nuclear domains that facilitate transcriptional regulation. Several lines of evidence are consistent with the concept that association of transcription factors with the nuclear matrix may be obligatory for fidelity of gene expression and maximal transcriptional activity. The identification of specific regions of transcription factors that are responsible for intranuclear trafficking to nuclear matrix-associated sites that support transcription, reinforces the linkage of nuclear structure to regulation of genes. CBFA2/AML-1 and CBFA1/AML-3 provide paradigms for directing gene regulatory factors to RNA polymerase II containing foci within the nucleus. The implications of modifications in the intranuclear trafficking of transcription factors for developmental and tissue-specific control, as well as for aberrations in gene expression that are associated with cancer and neurological disorders, are addressed. J. Cell. Biochem. 70:200-212, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...