ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • nuclear magnetic resonance  (1)
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 43 (1994), S. 1059-1074 
    ISSN: 0006-3592
    Keywords: NMR ; nuclear magnetic resonance ; metabolism ; antibody productivity ; metabolic modeling ; metabolic fluxes ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Carbon-13 nuclear magnetic resonance (NMR) spectroscopy was used to study the metabolism of a murine hybridoma cell line at two feed glutamine concentrations, 4.0 and 1.7 mM. Carbon-13 labeling patterns were used in conjunction with nutrient uptake rates to calculate the metabolic fluxes through the glycolytic pathway, the pentose shunt, the malate shunt, lipid biosynthesis, and the tricarboxylic acid (TCA) cycle. Decreasing the feed glutamine concentration significantly decreased glutamine uptake but had little effect on glucose metabolism. A significant incrase in antibody productivity occurred upon decreasing the feed glutamine level. The increased antibody productivity in concert with decreased glutamine uptake and no apparent change in glucolytic metabolism suggests that antibody production was not energy limited. Metabolic flux calculations indicate that (1) approximately 92% of the glucose consumed proceeds directly through glycolysis with 8% channeled through the pentose shunt; (2) lipid biosynthesis appears to be greater than malate shunt activity; and (3) considerable exchange occurs between TCA cycle intermediates and amino acid metabolic pools, leading to substantial loss of 13C label from the TCA cycle. These results illustrate that 13NMR spectroscopy is a powerfulf tool in the calculation of metabolic fluxes, particularly for exchange pathways where no net flux occurs. © 1994 John Wiley & Sons, Inc.
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...