ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-05-25
    Description: Author Posting. © American Geophysical Union, 2007. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research 112 (2007): B10207, doi:10.1029/2006JB004456.
    Description: A fundamental understanding of the effect of stress on permeability evolution is important for many fault mechanics and reservoir engineering problems. Recent laboratory measurements demonstrate that in the cataclastic flow regime, the stress-induced anisotropic reduction of permeability in porous rocks can be separated into 3 different stages. In the elastic regime (stage I), permeability and porosity reduction are solely controlled by the effective mean stress, with negligible permeability anisotropy. Stage II starts at the onset of shear-enhanced compaction, when a critical yield stress is attained. In stage II, the deviatoric stress exerts primary control over permeability and porosity evolution. The increase in deviatoric stress results in drastic permeability and porosity reduction and considerable permeability anisotropy. The transition from stage II to stage III takes place progressively during the development of pervasive cataclastic flow. In stage III, permeability and porosity reduction becomes gradual again, and permeability anisotropy diminishes. Microstructural observations on deformed samples using laser confocal microscopy reveal that stress-induced microcracking and pore collapse are the primary forms of damage during cataclastic flow. A probabilistic damage model is formulated to characterize the effects of stress on permeability and its anisotropy. In our model, the effects of both effective mean stress and differential stress on permeability evolution are calculated. By introducing stress sensitivity coefficients, we propose a first-order description of the dependence of permeability evolution on different loading paths. Built upon the micromechanisms of deformation in porous rocks, this unified model provides new insight into the coupling of stress and permeability.
    Description: W.Z. was partially supported by the National Science Foundation under grants NSF-OCE0221436 and NSF-EAR 0510459, and the Department of Energy under grant #DEFGO200ER15058 (WHOI). LM was supported by the National Science Foundation under grant NSF-EAR0337678.
    Keywords: Permeability anisotropy ; Cataclastic flow ; Shear-enhanced compaction
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Pure and applied geophysics 143 (1994), S. 387-423 
    ISSN: 1420-9136
    Keywords: Fault gouge ; Riedel shear ; nonlinear dynamics ; rock friction ; orientation of stress ; shear localization ; stick-slip instability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Physics
    Notes: Abstract Frictional sliding experiments were conducted on two types of simulated quartz gouge (with median particle diameters 5 μm and 25 μm, respectively) at confining pressures ranging from 50 MPa to 190 MPa in a conventional triaxial configuration. To investigate the operative micromechanical processes, deformation texture developed in the gouge layer was studied in samples which had accumulated different amounts of frictional slip and undergone different stability modes of sliding. The spatial patterning of shear localization was characterized by a quantitative measurement of the shear band density and orientation. Shear localization in the ultrafine quartz gouge initiated very early before the onset of frictional sliding. Various modes of shear localization were evident, but within the gouge zoneR 1-shears were predominant. The density of shear localization increased with cumulative slip, whereas the angle subtended at the rock-gouge interface decreased. Destabilization of the sliding behavior in the ultrafine quartz gouge corresponded to the extension ofR 1-shears and formation of boundaryY-shear segments, whereas stabilization with cumulative slip was related to the coalescence ofY-shear segments to form a throughgoing boundary shear. In the coarse quartz gouge, the sliding behavior was relatively stable, probably because shear localization was inhibited by distributed comminution. Two different models were formulated to analyze the stress field within the gouge zone, with fundamentally different predictions on the orientations of the principal stresses. If the rock-gouge interface is assumed to be bonded without any displacement discontinuity, then the maximum principal stress in the gouge zone is predicted to subtend an angle greater than 45° at the interface. If no assumption on displacement or strain continuity is made and if the gouge has yielded as a Coulomb material, then the maximum principal stress in the gouge zone is predicted to subtend an angle less than 45°. If the apparent friction coefficient increases with overall slip (i.e., slip-hardening), then the Riedel shear angle progressively decreases with increasing shear strain within the gouge layer, possibly attaining a zero value which corresponds to a boundaryY-shear. Our quantitative data on shear localization orientation are in reasonable agreement with this second model, which implies the coefficient of internal friction to be about 0.75 for the ultrafine quartz gouge and 0.8 for the coarse gouge. The wide range of orientations for Riedel shear localization observed in natural faults suggests that the orientations of principal stresses vary as much as in an experimental gouge zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...