ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • METEOROLOGY AND CLIMATOLOGY  (1)
  • nitrogen dioxide  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of atmospheric chemistry 1 (1984), S. 151-157 
    ISSN: 1573-0662
    Keywords: Atmosphere ; photolysis ; nitrogen dioxide ; photodissociation coefficient ; temperature effect
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The photodissociation coefficient, J NO2 of NO2 in the atmosphere was calculated at 235 and 298 K using the measured temperature dependences of the absorption cross-sections and quantum yields. These calculations gave a ratio J NO2(298 K)/J NO2(235 K)=1.155±0.010 which is only weakly dependent on altitude, surface albedo and solar zenith angle.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-28
    Description: The source strength of atmospheric trace gases from natural ecosystems must be quantified in order to assess the effect of such inputs on the background tropospheric chemistry. A static chamber technique and a gas exchange technique were used to determine the emissions of nitrous oxide from five sites within the Hudson Bay Lowland, as part of the Northern Wetland Study. Two mechanisms, one diffusive and the other episodic, were found likely to be responsible for the emissions of nitrous oxide. The annual diffusive flux ranged from -3.8 mg(N2O)/sq m in a treed bog to 7.9 mg(N2O)/sq m in an open fen. The addition of the episodic flux, increased this range to -2.1 mg(N2O)/sq m and 18.5 mg(N2O)/sq m respectively. These episodic emissions occurred in from 2.5% to 16.7% of the samples during the late summer peak emission period. Since the gas exchange rate could not detect the episodic emissions, it was found to be a poor method for water emission rate determination within the wetland. LANDSAT-Thermatic Mapper (TM) imagery was used to scale the emissions, from the chamber level to an integrated average over the entire Hudson Bay Lowland. The total emission rate of N2O from the Hudson Bay Lowland, was determined to be 1.2 Gg(N2O)/year, of which 80% was attributed to episodic emissions.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; D1; p. 1573-1588
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...