ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • nitrification  (3)
  • Density  (1)
  • Springer  (4)
Sammlung
Verlag/Herausgeber
  • Springer  (4)
Erscheinungszeitraum
  • 1
    ISSN: 1432-1939
    Schlagwort(e): Plantago ; Growth ; Rhizosphere ; Nutrition ; Density ; Biotic interaction
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Biologie
    Notizen: Summary To investigate the influence of soil-borne pathogens on the population biology of a grassland species in natural vegetation, soil samples were collected, partly disinfected or sterilized and then planted with Plantago lanceolata. Those on some of the untreated soils showed growth reduction due to a biotic factor in the soil. This growth reduction was not associated with the density of P. lanceolata plants at the sampling sites. It was only visible when differences in abiotic factors — especially nutrient levels —were eliminated. In the natural situation the nutritional status of the soil has a far greater impact than biotic soil factors. Micro-organisms harmful to Plantago roots are considered to be of minor importance in the distribution of the individuals in the P. lanceolata population studied.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    ISSN: 1573-5036
    Schlagwort(e): acidic soils ; denitrification ; Deschampsia flexuosa (L.) Trin. ; leaching ; 15N balance ; nitrification ; NRA
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract High deposition levels of atmospheric ammonia in the Netherlands have led to the major replacement of dwarf shrubs by grasses and to elevated nitrification rates in acid heathland soils. In order to study the efficacy of a naturally established grass-heath of Deschampsia flexuosa at capturing NO- 3, an outdoor 'mesocosm' lysimeter experiment was set up with relatively large and undisturbed soil columns from two Deschampsia-dominated heathland sites. One of the sites (Ede) had a relatively high rate of nitrate production, whereas the other (Hoorneboeg [HB]) showed practically no nitrate formation. For part of the Ede columns, the fate of labeled nitrate, split-applied at two rates (30 or 150 kg ha-1 yr-1) during two seasons, was studied. D. flexuosa was highly effective in acquiring fertilizer nitrate, as demonstrated by (1) distinct rises in foliar NRA, especially at high N; (2) increased 15N enrichments in all plant components with N rate; (3) significant increases in organic-N and carboxylate concentration in several plant compartments; and (4) clear shifts in biomass allocation in favour of the aboveground tissues. After 18 months at low N, an average 39 and 23% of the applied N was immobilized in the plant and soil compartments, respectively; at high N rate, corresponding recoveries were 33 and 20%. Total leaching of nitrate (beyond a depth of 35 cm) from the unfertilized Ede columns corresponded to an annual loss of 1.9 kmol N ha-1, whereas leaching was virtually zero from HB columns. Relatively high amounts of N leached from the fertilized columns with apparent fertilizer recovery in the leachate reaching an average 60% at high N. However,15 N analyses revealed only recoveries of 2.0% (low N) and 7.2% (high N) of the applied N in the leachate. From columns where the plant cover had been removed, apparent and real leaching losses reached values of 〉100 and 10% of the applied N, respectively. Hence, soil-derived N appeared by far the major source of leaching. Unplanted and unfertilized HB columns displayed high rates of nitrification and leached high amounts of nitrate, suggesting a plant-induced repression of the in situ nitrification at this site. On average, planted columns had lost 37% (low N) and 40% (high N) of the applied N, whereas unplanted lysimeters had lost 89% (for both low and high N). The N not recovered was presumed lost by denitrification due to favourable conditions with respect to nitrate concentration, moisture, carbon supply, and temperature.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Plant and soil 127 (1990), S. 179-192 
    ISSN: 1573-5036
    Schlagwort(e): acid soils ; ammonium ; Calluna vulgaris ; Deschampsia flexuosa ; Erica tetralix ; heathland ecosystems ; labile organic P ; Molinia caerulea ; nitrogen mineralization ; nitrate ; nitrification
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract A survey was conducted over a range of 17 Dutch heathland locations, subdivided into 41 sites dominated by either dwarf-shrubs (Calluna vulgaris or Erica tetralix) or grass species (Deschampsia flexuosa or Molinia caerulea). Among the habitats of the dominant plant species relatively little differences in general soil properties were observed. The P status of Deschampsia sites was relatively high as well as the NO3 −-N concentrations in the 0–10 cm layer (FH included) at the grass-dominated sites. At sites with a dead or degenerating dwarf-shrub vegetation, NH4 +-N concentrations reached very high levels. Net production of nitrate was observed during incubation of intact 0–10 cm soil cores (FH-layer included) in the laboratory for all sites, even though in some instances, particularly at Calluna and Erica sites, no nitrate was initially measured. Generally, a higher nitrification rate was found for the grass-dominated sites, and for Deschampsia in particular. The net production of nitrate was highly significantly correlated with net N mineralization, being a reasonable predictor of nitrification in a simple regression model (R2=0.47; P〈0.001). Net nitrification was also significantly correlated with the NO3 −-N initially present at the start of the growing season (R=0.65; P〈0.001) and with the labile organic P content of the soil (R=0.65; P〈0.001). By including initial NO3 −-N and labile organic P, together with net N mineralization and pH, in a multiple regression model, net nitrate production could be predicted with a much higher precision (R2=0.75; P〈0.001). Although apparent nitrification was not significantly correlated with pH, the latter contributed significantly to the multiple regression equation for the prediction of the former. The influence of the labile organic P pool may act via its positive correlation with microbial biomass, thus more or less reflecting the potential mineralization/nitrifying capacity of a particular site.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    ISSN: 1573-5036
    Schlagwort(e): acidic soils ; ammonium ; Deschampsia flexuosa (L.) Trin. ; nitrate ; nitrification ; N-mineralization ; NRA ; seasonal variation
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Land- und Forstwirtschaft, Gartenbau, Fischereiwirtschaft, Hauswirtschaft
    Notizen: Abstract Two Dutch heathland sites Hoorneboeg (HB) and Ede, dominated by Deschampsia flexuosa and differing in nitrate production, were sampled for an entire growing season. A large number of soil and plant parameters were monitored in an attempt to assess the contribution of nitrate in the N supply and its assimilation by Deschampsia. Average NO3 − and NH4 + concentrations (mg kg−1) in the top 10-cm depth were 0.03 and 2.2, respectively, for HB, and 2.1 and 6.7, respectively, for Ede. Laboratory incubations of intact cores and experiments with FH-layer suspensions showed significantly higher mineralization and nitrification rates for the Ede site during most of the season. Nitrification was largely controlled by the rate of net N-mineralization, which in turn was highly affected by soil moisture. Nitrate production was virtually zero at HB and accounted for 25% of the net N-mineralization at Ede. Shoot chemical composition showed no essential differences for the two sites, but mean in vivo (current) foliar NRA was almost 2-fold higher at Ede than at HB, indicating some utilization of nitrate at the former location. At the HB site with essentially no nitrate production, however, enzyme activities were clearly higher than ‘basal’ constitutive levels in NH4 +-fed plants. Apparently, shoot NRA at the HB site became positively affected by factors other than nitrate availability and/or showed disproportional increases in response to atmospheric nitrate inputs. Root NRA displayed the same low basal level at the two sites. Nitrate fertilization (100 kg N ha−1) yielded maximally induced foliar NRAs similar to levels found in hydroponic nitrate plants. Although no accumulation of free NO3 − was observed in shoots from fertilized plots, increases in foliar concentrations of both organic N and carboxylates clearly indicated nitrate assimilation. Root NRA showed no response to nitrate addition. It is concluded that current NRA measurements in Deschampsia at heathland sites are of limited value only, especially when interpreted ‘in isolation’. A combined approach, using concurrently conducted soil and plant analyses, will allow the extent of nitrate utilization in the field to be best characterized.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...