ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • NMR  (1)
  • murine brain  (1)
Collection
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    European biophysics journal 18 (1990), S. 139-148 
    ISSN: 1432-1017
    Keywords: NMR ; Conformation ; Oligosaccharides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Physics
    Notes: Abstract The oligomannose series of oligosaccharides from bovine thyroglobulin (BTG) and the variant surface glycoprotein (VSG) ofTrypanosoma brucei have been isolated and sequenced by1H NMR. The structure of Man9GlcNAc2, the parent molecule of the series, is shown below. Structural isomerism occurs within this series through the removal of residues D1, D2, D3, and C. Using spin-spin coupling and chemical shift data the rotamer distributions about the dihedral angle ω for the Manα1-6Man\ and Manα1-6Manα linkages were determined for each member of the series. It is shown that the dihedral angle ω of the Manα1-6Man\ linkage exhibits low flexibility with a preference for the ω = 180° conformation when residue D2 is present and high flexibility when this residue is absent. Flexibility of ω for the Manα1-6Manα is largely independent of primary sequence and is intermediate between the two Manoα1-6Man\ extremes, again with a preference for the ω = 180° conformation. There are, however, data which indicate that removal of residue D3 may confer additional flexibility upon the dihedral angle ω of the Manα1-6Manα linkage. Molecular graphics modelling, together with chemical and enzymatic modification studies, suggest that the origin of the observed primary sequence dependence of the Manα1-6Man\ linkage arises from steric factors. On the basis of these observations taken together with previous work, it is postulated that recognition of individual oligomannose conformations may play a role in the control of N-linked oligosaccharide biosynthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-4986
    Keywords: N-linked ; oligosaccharide library ; L2/HNK-1 epitope ; anionicity ; murine brain ; large scale hydrazinolysis
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract In this report, we describe the preparation of a library ofN-linked glycans from whole murine brain obtained by the large-scale hydrazinolysis of an acetone powder of the tissue followed by chromatographic procedures. 84% of the characterized oligosaccharides were found to be anionic, the remainder neutral. The anionic species were successively neutralized by neuraminidase (29%), aq. hydrofluoric acid (30%), and methanolysis (26%), indicating that approximately equal portions were sensitive to desialylation, dephosphorylation and desulfation, respectively. The presence of the sulfated fraction was confirmed by direct35SO4 metabolic labelling. A residual partially characterized fraction was found to be anionic through possession of carboxylic acid groups, unrelated to sialic acid. The purified oligosaccharides, in the absence of their original protein conjugates, were shown to retain those immunological characteristics essential for recognition by a specific monoclonal antibody, LS (412), that is known to recognize a carbohydrate epitope present on a number of neural adhesion molecules and functional in neural cell adhesion. These properties confirm the viability of scaling up the size of the hydrazinolysis procedure and adapting it to whole tissue for the production of glycan libraries and for the probing of structures of interest.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...