ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Earth Resources and Remote Sensing; Meteorology and Climatology  (1)
  • multimodal distributions  (1)
Collection
Keywords
Language
Years
  • 1
    Publication Date: 2024-02-12
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Extreme temperature events have traditionally been detected assuming a unimodal distribution of temperature data. We found that surface temperature data can be described more accurately with a multimodal rather than a unimodal distribution. Here, we applied Gaussian Mixture Models (GMM) to daily near‐surface maximum air temperature data from the historical and future Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations for 46 land regions defined by the Intergovernmental Panel on Climate Change. Using the multimodal distribution, we found that temperature extremes, defined based on daily data in the warmest mode of the GMM distributions, are getting more frequent in all regions. Globally, a 10‐year extreme temperature event relative to 1985–2014 conditions will occur 13.6 times more frequently in the future under 3.0°C of global warming levels (GWL). The frequency increase can be even higher in tropical regions, such that 10‐year extreme temperature events will occur almost twice a week. Additionally, we analyzed the change in future temperature distributions under different GWL and found that the hot temperatures are increasing faster than cold temperatures in low latitudes, while the cold temperatures are increasing faster than the hot temperatures in high latitudes. The smallest changes in temperature distribution can be found in tropical regions, where the annual temperature range is small. Our method captures the differences in geographical regions and shows that the frequency of extreme events will be even higher than reported in previous studies.〈/p〉
    Description: Plain Language Summary: Extreme temperature events are unusual weather conditions with exceptionally low or high temperatures. Traditionally, the temperature range was determined by assuming a single distribution, which describes the frequency of temperatures at a given climate using their mean and variability. This single distribution was then used to detect extreme weather events. In this study, we found that temperature data from reanalyses and climate models can be more accurately described using a mixture of multiple Gaussian distributions. We used the information from this mixture of Gaussians to determine the cold and hot extremes of the distributions. We analyzed their change in a future climate and found that hot temperature extremes are getting more frequent in all analyzed regions at a rate that is even higher than found in previous studies. For example, a global 10‐year event will occur 13.6 times more frequently under 3.0°C of global warming. Furthermore, our results show that the temperatures of hot days will increase faster than the temperature of cold days in equatorial regions, while the opposite will occur in polar regions. Extreme hot temperatures will be the new normal in highly populated regions such as the Mediterranean basin.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉Extreme temperature events are detected with Gaussian Mixture Models to follow a multimodal rather than a unimodal distribution〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉10‐year temperature extremes will occur 13.6 times more frequently under 3.0°C future warming〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Colder days are getting warmer faster than hotter days in high latitudes, whereas it is the opposite for many regions in low latitudes〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: European Research Council http://dx.doi.org/10.13039/501100000781
    Description: https://github.com/EyringMLClimateGroup/pacal23jgr_GaussianMixtureModels_Extremes
    Description: https://doi.org/10.5281/zenodo.3401363
    Keywords: ddc:551.5 ; extreme events ; Gaussian mixture models ; daily maximum temperatures ; return periods ; bimodal distributions ; multimodal distributions
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: This study evaluates the performance of NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) precipitation product in reproducing the trend and distribution of extreme precipitation events. Utilizing the extreme value theory, time-invariant and time-variant extreme value distributions are developed to model the trends and changes in the patterns of extreme precipitation events over the contiguous United States during 1979-2010. The Climate Prediction Center (CPC) U.S.Unified gridded observation data are used as the observational dataset. The CPC analysis shows that the eastern and western parts of the United States are experiencing positive and negative trends in annual maxima, respectively. The continental-scale patterns of change found in MERRA seem to reasonably mirror the observed patterns of change found in CPC. This is not previously expected, given the difficulty in constraining precipitation in reanalysis products. MERRA tends to overestimate the frequency at which the 99th percentile of precipitation is exceeded because this threshold tends to be lower in MERRA, making it easier to be exceeded. This feature is dominant during the summer months. MERRA tends to reproduce spatial patterns of the scale and location parameters of the generalized extreme value and generalized Pareto distributions. However, MERRA underestimates these parameters, particularly over the Gulf Coast states, leading to lower magnitudes in extreme precipitation events. Two issues in MERRA are identified: 1) MERRA shows a spurious negative trend in Nebraska and Kansas, which is most likely related to the changes in the satellite observing system over time that has apparently affected the water cycle in the central United States, and 2) the patterns of positive trend over the Gulf Coast states and along the East Coast seem to be correlated with the tropical cyclones in these regions. The analysis of the trends in the seasonal precipitation extremes indicates that the hurricane and winter seasons are contributing the most to these trend patterns in the southeastern United States. In addition, the increasing annual trend simulated by MERRA in the Gulf Coast region is due to an incorrect trend in winter precipitation extremes.
    Keywords: Earth Resources and Remote Sensing; Meteorology and Climatology
    Type: GSFC-E-DAA-TN31554 , Journal of Hydrometeorology (ISSN 1525-755X) (e-ISSN 1525-7541); 17; 2; 693-711
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...