ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 9 (1988), S. 129-139 
    ISSN: 0886-1544
    Keywords: microtubules ; motility ; cilia ; surface lattice ; biotin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Studies were conducted to determine if dynein could bind to unpolymerized tubulin. Tubulin alone normally fractionated in the included volume of a molecular sieve Bio-Gel A-1.5m column. Incubated together, tubulin and dynein coeluted in the void volumn, suggesting that a complex had formed between the two. In addition, immunoelectron microscopy revealed preassembled microtubules were labeled with biotin antibody only when incubated in both dynein and biotinylated tubulin, evidence that dynein with bound biotinylated tubulin had decorated the microtubules. A fraction of the tubulin could be dissociated from dynein by addition of ATP and vanadate, as assayed by molecular sieve chromatography followed by densitometry of gels, suggesting that some tubulin bound to the B end of the dynein arm. Additional tubulin dissociated from the dynein under conditions of high salt. These studies, together with those indicating that tubulin blocked the A end of the dynein arm from binding to microtubules and promoted the interaction of two arms at their A ends, provide evidence that the A end of the arm also can bind tubulin. Thus, the tubulin subunits, themselves, on a microtubule rather than a particular surface lattice structure formed by adjacent protofilaments may provide the binding sites for both ends of the dynein arm.
    Additional Material: 7 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 22 (1992), S. 175-184 
    ISSN: 0886-1544
    Keywords: protein phosphorylation ; signal transduction ; motility ; alpha-adrenoceptors ; microtubules ; pigment ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Medicine
    Notes: Melanophores of the cichlid Tilapia mossambica can be induced to aggregate pigment by addition of epinephrine to the medium, suggesting adrenergic control of this transport. The melanophore response to adrenergic stimulation was examined using agonists and antagonists that are highly specific for each alpha-adrenoceptor subclass. The signal transduction mechanism of each subclass is unique: stimulation of alpha1 receptors results in a rise in intracellular free Ca2+, while alpha2 stimulation results in decreased cAMP levels [Exton, 1985: Am. J. Physiol. 248:E633-E647 ]. Each alpha1 or alpha2 specific agonist tested showed a dose dependent ability to induce aggregation and each was able to effect complete aggregation of pigment, suggesting that aggregation can be mediated either by elevating Ca2+ or by lowering cAMP. However, in the presence of either an alpha1 or an alpha2 receptor antagonist, none of the agonists were able to induce significant aggregation, suggesting that changes in levels of both messengers are required for pigment aggregation in the melanophores. Moreover, experiments in which intracellular levels of Ca2+ or cAMP were perturbed, using BAPTA and forskolin, respectively, indicated that elevating Ca2+ in the presence of high cAMP is not sufficient to induce aggregation and, conversely, that lowering cAMP levels in the presence of reduced Ca2+ is not sufficient to induce pigment aggregation. These data indicate that the concentrations of both cAMP and Ca2+ are important in regulating pigment aggregation in teleost melanophores, and suggest that maximal aggregation of pigment requires altering the levels of both messengers. © 1992 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...