ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
Filter
  • motility  (6)
  • microtubule sliding  (2)
  • 1
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 28 (1994), S. 199-204 
    ISSN: 0886-1544
    Schlagwort(e): axoneme ; cilia ; flagella ; microtubule ; motility ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: Observations that were interpreted to provide evidence for equivalent functions of all axonemal dyneins should be reinterpreted, and models based on this assumption should be abandoned. In the future, attempts to understand the mechanisms for flagellar bending, oscillation, and bend propagation should start from the assumption that each type of axonemal dynein may have a specific function. At least three distinct functions can now be identified: bend initiation, maintenance of the angle of propagating bends, and generation of power to overcome viscous resistances. Only the last of these three functions is an outer arm dynein function. © 1994 Wiley-Liss, Inc.
    Zusätzliches Material: 1 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 4 (1984), S. 417-430 
    ISSN: 0886-1544
    Schlagwort(e): flagella ; image analysis ; microcomputer ; motility ; parameter estimation ; Simplex method ; spermatozoa ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: Parameters to describe flagellar bending patterns can be obtained by a microcomputer procedure that uses a set of parameters to synthesize model bending patterns, compares the model bending patterns with digitized and filtered data from flagellar photographs, and uses the Simplex method to vary the parameters until a solution with minimum root mean square differences between the model and the data is found. Parameters for Chlamydomonas bending patterns have been obtained from comparison of shear angle curves for the model and the data. To avoid the determination of the orientation of the basal end of the flagellum, which is required for calculation of shear angles, parameters for sperm flagella have been obtained by comparison of curves of curvature as a function of length for the model and for the data. A constant curvature model, modified from that originally used for Chlamydomonas flagella, has been used for obtaining parameters from sperm flagella, but the methods can be applied using other models for synthesizing the model bending patterns.
    Zusätzliches Material: 5 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 18 (1991), S. 123-130 
    ISSN: 0886-1544
    Schlagwort(e): calmodulin ; motility ; spermatozoa ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: The asymmetry of ATP-reactivated flagellar bending waves of Triton-demem-brated sea urchin spermatozoa has been measured over a range of free Ca2+ ion concentrations from 10-9 to 10-4 M. Detailed examination of the gradual response of asymmetry to Ca2+ ion concentration over this wide range indicates the presence of two Ca2+ sensors. A high-affinity sensor operates at Ca2+ concentrations near 10-7.5 M. A lower-affinity sensor operates at Ca2+ concentrations above 10-6 M, in the typical range for calmodulin-mediated responses. Incubation of demembranated sperm flagella at high Ca2+ concentrations to release calmodulin is required to enable these Ca2+ responses to be observed. This treatment also causes a decrease in the apparent affinity of the flagella for cal-modulin, as determined by measuring the increase in asymmetry in response to addition of exogenous calmodulin at low Ca2+ concentration.
    Zusätzliches Material: 6 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 26 (1993), S. 144-162 
    ISSN: 0886-1544
    Schlagwort(e): axoneme ; bend propagation ; flagella ; microtubule sliding ; motility ; vanadate ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: Microtubule sliding associated with the bending of reactivated flagella of demembranated spermatozoa of the tunicate, Ciona, has been analyzed using a descriptive model that permits quantitation of metachronous and synchronous components of sliding. Reduced-amplitude bending waves, obtained by addition of increased salt (K acetate), lithium, or vanadate to the reactivation solutions, have been examined. Increased K acetate can decrease bend angle by as much as 70% with little change in frequency.In all cases, a decrease in the amplitude, or bend angle, of propagated bends is measured as a decrease in the metachronous component of sliding and is associated with a reduction in the growth of new bends after they begin to propagate during the second half-cycle of bend development. At higher K acetate concentrations, bend growth during the second half-cycle of bend development is very strongly reduced and may even become negative. A disparity between the rates of bend growth in the first and second half-cycles of bend development corresponds to a large amount of synchronous sliding in the distal portion of the flagellum. When the synchronous sliding component is large, the sliding velocity in a propagating bend decreases to near-0 values and may even reverse its direction as the bend propagates through the mid-region of the flagellum. Since these large perturbations of sliding velocity do not interfere with regular propagation of bends with nearly constant bend angle, the bend propagation mechanism cannot operate by metachronous control of the velocity of sliding, and is unlikely to operate by local monitoring of either the amount or velocity of sliding. These observations therefore argue against models in which active sliding is regulated by shear or sliding velocity, and make curvature-controlled models relatively more attractive.In many cases, a reduction in sliding during bend initiation (the first half-cycle of development of new bends) also contributes to the decreased amplitude of propagated bends. These changes in bend initiation are similar in both full-length flagella and in flagella shortened by breakage. The amount of sliding that occurs during bend initiation is relatively independent of the distribution of sliding between metachronous and synchronous components in the distal part of the flagellum. These observations therefore provide additional evidence that bend initiation and bend propagation are independent and separable processes. © 1993 Wiley-Liss, Inc.
    Zusätzliches Material: 16 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 32 (1995), S. 65-79 
    ISSN: 0886-1544
    Schlagwort(e): Ciona ; flagella ; motility ; tyrosine kinase ; cAMP-dependent kinase ; spermatozoa ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: A specific peptide inhibitor of the cyclic AMP (cAMP)-dependent protein kinase (PKI-peptide) is a very effective inhibitor of the cAMP-dependent activation of motility of Ciona spermatozoa, when the PKI-peptide is present at the beginning of incubation of demembranated spermatozoa with cAMP and ATP. Under conditions where approximately 120 sec is required for full activation of motility, the window of sensitivity to the PKI-peptide lasts for only 25-30 sec. Examination of sperm pellet proteins labeled with 32P ATP during activation reveals a major 25 kDa phosphoprotein and 2 minor phosphoproteins whose phosphorylation is highly sensitive to inhibition by the PKI-peptide and essentially complete during this early phase. These sperm proteins appear to be immediate substrates for cAMP-dependent protein kinase, and phosphorylation of one or more of these appears to be required, but not sufficient, for activation of motility. The phosphorylation of other proteins is reduced or eliminated when PKI-peptide is present at the beginning of incubation, but is unaffected by later addition of PKI-peptide. Some of these substrates appear to be likely candidates for axonemal proteins that must be phosphorylated during the later stages of incubation in order to complete the activation process. This selection is based upon a high degree of inhibition by inclusion of PKI-peptide or other inhibitors at the start of the incubation process, on near-completion of their phosphorylation by the end of the 2 min incubation period required for activation of motility, and evidence that these proteins are phosphorylated during in vivo activation of motility. Although these observations suggest the presence of a second kinase activity that is upregulated by the initial activation of the cAMP-dependent protein kinase, assays using exogenous substrates have not yet been able to identify such a kinase activity. © 1995 Wiley-Liss, Inc.
    Zusätzliches Material: 9 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    New York, NY : Wiley-Blackwell
    Cell Motility and the Cytoskeleton 27 (1994), S. 150-160 
    ISSN: 0886-1544
    Schlagwort(e): axoneme ; bend propagation ; computer simulation ; flagella ; microtubule sliding ; motility ; Life and Medical Sciences ; Cell & Developmental Biology
    Quelle: Wiley InterScience Backfile Collection 1832-2000
    Thema: Biologie , Medizin
    Notizen: The distinct damped, or attenuated, bending pattern observed when demembranated sperm flagella of the tunicate, Ciona, are reactivated in the presence of 2 mM Li+ has been analysed in detail. In these patterns, bends are initiated at the base of the flagellum, but die out after they start to propagate along the flagellum, so that little or no bending is seen in the distal half of the flagellum. A quantitative descriptive analysis shows that the distinctive feature of this attenuation of bending wave amplitude is an asymmetric interbend decay, or slippage, occuring, on average, only at the transitions between a reverse bend and the preceding principal bend. This attenuation is combined with a significant amount of synchronous sliding in the distal half of the flagellum and a decrease in propagation velocity of transitions between bends in the mid-region of the flagellum.Computer simulations demonstrate that the synchronous sliding in the distal half of these flagella can be an entirely passive consequence of the mechanical interaction between active sliding and bending in the basal third of the flagellum and viscous resistances to movement of the distal region of the flagellum through the fluid environment. The current computer models do not contain a mechanism for asymmetric interbend decay that can reproduce these attenuated bending patterns. © 1994 Wiley-Liss, Inc.
    Zusätzliches Material: 6 Ill.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...