ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • inflamation site  (1)
  • monoiodoacetic acid  (1)
  • 1
    ISSN: 0730-2312
    Keywords: monoiodoacetic acid ; sulfhydryl reagent ; modulation of signal transduction ; redox-linked ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Actions of monoiodoacetic acid (MIA) as a sulfhydryl reagent on the different stages of the T cell receptor (TCR)-mediated signal transduction were examined. MIA (1 mM) prevented anti-TCR (CD3) monoclonal antibody (mAb)-induced energy-dependent receptor capping but at the same time promoted the anti-CD3 mAb/mitogen-induced tyrosine phosphorylation of the T cell activation-linked cellular proteins of 120, 80, 70, 56, and 40 KDa. Relatively low concentration (0.01 mM) of MIA further promoted anti-CD3 mAb-induced transcription of c-fos, production of IL-2, and cell surface expression of IL-2 receptors. The MIA-promoted TCR-mediated IL-2 production actually required signal transduction that could be inhibited by cyclosporin A, genistein, or H-7. In contrast, the same concentration of MIA as promoted the signal transduction for cell activation severely inhibited the anti-CD3 mAb-triggered signal delivery for cell proliferation, selectively at its early stage. We conclude from these results that MIA differentially affects various steps of signaling into T lymphocytes, suggesting that there exist multiple sites of MIA-sensitive or redox-linked control in the signal cascade. © 1995 Wiley-Liss, Inc.
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 53 (1993), S. 198-205 
    ISSN: 0730-2312
    Keywords: nitric oxide ; macrophage cell line ; T lymphocyte stimulation ; feedback suppression ; inflamation site ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: The indirect stimulation of macrophages to produce nitrite was examined by using the macrophage cell line J774. J774 spontaneously produced nitrite, when cultured at high concentration. J774 cultured in low concentration ( 〈 104 cells in 100 μl) barely produced nitrite. J774 cultured in low concentration produced a large amount of nitrite by the co-culture of nonadherent spleen cells or nonadherent peritoneal exudate cells, which were stimulated with con A, anti-CD3, or staphylococcal enterotoxin A. J774 (BALB/c derived: H-2d) cultured with either syngeneic (BALB/c) or allogeneic (B6; H-2b B10BR; H-2k) nonadherent lymphocytes, which were stimulated with conA or anti-CD3, produced nitric oxide. However, J774 produced nitric oxide by stimulation with SEA only when co-cultured with SEA-reactive T lymphocytes. Peritoneal exudate cells from mice, which did not proliferate by the stimulation of conA or anti-CD3, proliferated well by the addition of L-arginine homologue, NG-monomethyl-L-arginine. The proliferation of nonadherent peritoneal exudate cells stimulated with conA or anti-CD3 was suppressed by the addition of peritoneal macrophages. This suppression was abolished by the addition of NG-monomethyl-L-arginine.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...