ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 34 (1996), S. 435-448 
    ISSN: 0887-6266
    Keywords: model compound of polyamic ethyl ester ; meta- and para-diethyl-p,p-oxydiphenylene pyromellitamide ; NMR and FTIR methods ; curing kinetics ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Meta- and para-diethyl-p,p-oxydiphenylene pyromellitamide (DOP), the model compounds of the meta and para PMDA/ODA polyamic ethyl ester, were synthesized and characterized by NMR and FTIR spectroscopy. Investigation of the imidization in d6-DMSO solution using NMR and FTIR techniques has shown that both the half imide and imide were formed. Quantitative analysis of the curing rates and degrees of conversion of the isomers in dilute d6-DMSO solution as a function of time under isothermal conditions or as function of temperature at fixed time (1 h) indicated that the kinetics of the ring closure reaction of the meta and para isomers were the same within 10%. This suggests that intrinsic reactivity differences between the isomers do not have much effect on the imidization process and do not account for the differences in rate that have been observed for the meta and para polymers in the solid state. No interconversion between the two isomeric forms occurred below 180°C, as has been observed for polyamic acids and their model compounds. The degree of conversion strongly depended on the reaction temperature and increased quickly after 170°C. The rate constant of the second ring closure reaction was found to be approximately three to four times the rate constant of the first ring closure reaction. © 1996 John Wiley & Sons, Inc.
    Additional Material: 13 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...