ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1437-8213
    Keywords: bubbly flow ; turbulent boundary layer ; mixing length ; skin friction ; void fraction
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract A method of enveloping the hull with a sheet of microbubbles is discussed. It forms part of a study on means of reducing the skin friction acting on a ship's hull. In this report, a bubble traveling through a horizontal channel is regarded as a diffusive particle. Based on this assumption, an equation based on flow flux balance is derived for determining the void fraction in approximation. The equation thus derived is used for calculation, and the calculation results are compared with reported experimental data. The equation is further manipulated to make it compatible with a mixing length model that takes into account the presence of bubbles in the liquid stream. Among the factors contained in the equation thus derived, those affected by the presence of bubbles are the change of mixing length and the difference in the ratio of skin friction between cases with and without bubbles. These factors can be calculated using the mean void fraction in the boundary layer determined by the rate of air supply into the flow field. It is suggested that the ratio between boundary layer thickness and bubble diameter could constitute a significant parameter to replace the scale effect in estimating values applicable to actual ships from corresponding data obtained in model experiments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1437-8213
    Keywords: two-phase flow ; micro-bubble ; turbulent boundary layer ; Monte Carlo method ; mixing length
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences , Technology
    Notes: Abstract For the theoretical consideration of a system for reducing skin friction, a mathematical model was derived to represent, in a two-phase field, the effect on skin friction of the injection of micro air bubbles into the turbulent boundary layer of a liquid stream. Based on the Lagrangian method, the equation of motion governing a single bubble was derived. The random motion of bubbles in a field initially devoid of bubbles was then traced in three dimensions to estimate void fraction distributions across sections of the flow channel, and to determine local bubble behavior. The liquid phase was modeled on the principle of mixing length. Assuming that the force exerted on the liquid phase was equal to the fluid drag generated by bubble slip, an equation was derived to express the reduction in turbulent shear stress. Corroborating experimental data were obtained from tests using a cavitation tunnel equipped with a slit in the ceiling from which bubbly water was injected. The measurement data provided qualitative substantiation of the trend shown by the calculated results with regard to the skin friction ratio between cases with and without bubble injection as function of the distance downstream from the point of bubble injection.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...