ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1572-8080
    Keywords: Dataflow programming ; synchronous dataflow ; memory management ; multirate signal processing algorithms ; SDF compiler ; on-chip memory ; clustering ; minimum cuts ; dynamic programming
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract Dataflow has proven to be an attractive computational model for graphical DSP design environments that support the automatic conversion of hierarchical signal flow diagrams into implementations on programmable processors. The synchronous dataflow (SDF) model is particularly well-suited to dataflow-based graphical programming because its restricted semantics offer strong formal properties and significant compile-time predictability, while capturing the behavior of a large class of important signal processing applications. When synthesizing software for embedded signal processing applications, critical constraints arise due to the limited amounts of memory. In this paper, we propose a solution to the problem of jointly optimizing the code and data size when converting SDF programs into software implementations. We consider two approaches. The first is a customization to acyclic graphs of a bottom-up technique, called pairwise grouping of adjacent nodes (PGAN), that was proposed earlier for general SDF graphs. We show that our customization to acyclic graphs significantly reduces the complexity of the general PGAN algorithm, and we present a formal study of our modified PGAN technique that rigorously establishes its optimality for a certain class of applications. The second approach that we consider is a top-down technique, based on a generalized minimum-cut operation, that was introduced recently in [14]. We present the results of an extensive experimental investigation on the performance of our modified PGAN technique and the top-down approach and on the trade-offs between them. Based on these results, we conclude that these two techniques complement each other, and thus, they should both be incorporated into SDF-based software implementation environments in which the minimization of memory requirements is important. We have implemented these algorithms in the Ptolemy software environment [5] at UC Berkeley.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Formal methods in system design 11 (1997), S. 41-70 
    ISSN: 1572-8102
    Keywords: dataflow programming ; synchronous dataflow ; memory management ; multirate signal processing algorithms ; SDF compiler ; on-chip memory ; minimum cuts ; dynamic programming
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract In this paper, we formally develop techniques that minimize the memory requirements of a target program when synthesizing software from dataflow descriptions of multirate signal processing algorithms. The dataflow programming model that we consider is the synchronous dataflow (SDF) model [21], which has been used heavily in DSP design environments over the past several years. We first focus on the restricted class of well-ordered SDF graphs. We show that while extremely efficient techniques exist for constructing minimum code size schedules for well-ordered graphs, the number of distinct minimum code size schedules increases combinatorially with the number of vertices in the input SDF graph, and these different schedules can have vastly different data memory requirements. We develop a dynamic programming algorithm that computes the schedule that minimizes the data memory requirement from among the schedules that minimize code size, and we show that the time complexity of this algorithm is cubic in the number of vertices in the given well-ordered SDF graph. We present several extensions to this dynamic programming technique to more general scheduling problems, and we present a heuristic that often computes near-optimal schedules with quadratic time complexity. We then show that finding optimal solutions for arbitrary acyclic graphs is NP-complete, and present heuristic techniques that jointly minimize code and data size requirements. We present a practical example and simulation data that demonstrate the effectiveness of these techniques.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...