ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 51 (1993), S. 190-197 
    ISSN: 0730-2312
    Keywords: energy metabolism ; glycolysis ; differentiation stage ; alkaline phosphatase ; mineralization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Bone marrow stromal cells give rise to osteoprogenitor cell (OPC) colonies, with characteristic mineralized bone nodules in vitro. During differentiation, OPCs in the culture are surrounded by heterogeneous populations of various cell lineages and by different OPC differentiation stages. In the present study, attempts were made to increase the homogeneity of OPCs in culture. The reliance on energy metabolism restricted to glycolysis, which is specific to the premineralizing skeletal cells, was tested as a selectable marker for cells in this stage. Day 12 alkaline phosphatase (ALP) and day 20-21 calcium precipitates were used as early and late OPC differentiation markers. Malonate, a competitive inhibitor of succinate dehydrogenase, was added to the OPC stimulation medium, to interfere with the Krebs cycle-dependent energy metabolism operating in most of the stromal cells. OPCs that entered the stage of energy metabolism restricted to glycolysis were expected to become malonate resistant. Malonate showed dose and time dependence, 10 mM malonate added on day 3, decreased day 12 ALP activity/well to the lowest level. Variations in time and length of exposure to malonate used during the first 12 days of differentiation showed an inverse correlation between specific ALP activity and cell yield. Malonate-treated variations of specific ALP and of cell yield indices were up to 30- to 40-fold larger than variations within day 21 calcium precipitates. Thus, calcifying cells were almost unchanged relatively to noncalcifying cells. These results indicate that malonate-resistant cells are mostly selected, rather than induced, to differentiate by malonate. The results also show that stromal derived OPCs undergo a similar biochemical stage as in chondrocytes. © 1993 Wiley-Liss, Inc.
    Additional Material: 5 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 0730-2312
    Keywords: energy metabolism ; mineralization ; OPC-stimulation ; dexamethasone ; mitochondrial membrane ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Bone marrow stromal cells contain colony forming cells with the potential to differentiate into osteoprogenitor (OPC) cells. OPC-stimulation medium, containing dexamethasone, ascorbate, and β-glycerophosphate is widely used to recruit OPCs in culture. Cultures were incubated 24 h with rhodamine 123 (Rho), on different days, to examine the effect of the OPC-stimulation medium on the mitochondrial membrane potential of stromal cells. Cultures grown in both ordinary medium (DMEM with 15% FCS) and OPC-stimulation medium showed 2 Rho retention peaks on days 3-4 and 10-11. Between days 5 and 10 there was a drop in Rho retention/cell. OPC-stimulation medium increased Rho retention by at least twice the amount relative to ordinary medium, and has quadrupled it on day 7. Incubation with Rho concentrations above 5.0 μg/ml inhibited the portion of increased Rho retention which was contributed by the OPC-stimulation medium. Prolonged exposure to 0.1, 1.0, and 10.0 μg/ml Rho for 12 days only slightly increased day 12 ALP activity/cell, had no effect on day-21 mineralization and only the high dose, 10.0 μg/ml, doubled stromal cell proliferation. Under 24 h incubation Rho concentrations of 1.0 μg/ml and below can serve as a marker for mitochondrial membrane potential in differentiating stromal cells. The results indicate that under both culture conditions stromal cell mitochondria undergo cycles of high and low membrane potential states and that the OPC-stimulation medium constantly maintains an elevated membrane potential relative to ordinary medium.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 0730-2312
    Keywords: osteoprogenitors ; marrow-stroma ; alkaline phosphatase ; bisphosphonates ; cell proliferation ; mineralization ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Bisphosphonates (BPs) are inhibitors of bone resorption and soft tissue calcification. The biological effects of the BPs in calcium-related disorders are attributed mainly to their incorporation in bone, enabling direct interaction with osteoclasts and/or osteoblasts through a variety of biochemical pathways. Structural differences account for the considerable differences in the pharmacological activity of BPs. We compared the effects of two structurally different compounds, alendronate and 2-(3′-dimethylaminopyrazinio)ethylidene-1,1-bisphosphonic acid betaine (VS-6), in an osteoprogenitor differentiation system. The BPs were examined in a bone marrow stromal-cell culture system, which normally results in osteoprogenitor differentiation. The drugs were present in the cultures from days 2 to 11 of osteogenic stimulation, a period estimated as being comparable to the end of proliferation and the matrix-maturation stages. We found that the two different BPs have opposing effects on specific alkaline phosphatase (ALP) activity, on stromal-cell proliferation, and on cell-mediated mineralization. These BPs differentially interact with cell-associated phosphohydrolysis, particularly at a concentration of 10-2 of ALP Km, in which alendronate inhibits whereas VS-6 did not inhibit phosphatase activity. VS-6 treatment resulted in similar and significantly increased mineralization at 10 and 1 μM drug concentrations, respectively. In contrast, mineralization was similar to control, and significantly decreased at 10 and 1 μM drug concentrations, respectively, under alendronate treatment. J. Cell. Biochem. 68:186-194, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 69 (1998), S. 316-325 
    ISSN: 0730-2312
    Keywords: osteoprogenitors ; mineralization ; marrow stroma ; Src ; tyrosine kinase dexamethasone ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Src protein is essential for the regulation of bone turnover primarily via bone resorption because it is required in osteoclast differentiation and function. We followed temporal changes of Src protein abundance in marrow stromal cells induced to mineralize by dexamethasone (DEX), growth in cold temperature, or both. Given the tyrosine kinase function of Src and its numerous substrates, profiles of phosphotyrosine-containing proteins were followed as well. On day 11 of stimulation, specific alkaline phosphatase (ALP) activity at 30°C decreased under DEX relative to 37°C cultures, in accord with increased cell counts. Mineralization per well under DEX increased by 25% at 37°C, whereas at 30°C it increased by more than threefold regardless of the DEX stimulation. At 30°C, on a per cell basis mineralization increased 2.5 and 3 times with and without DEX, respectively. Cultures at 37°C showed a general drop per cell of many phosphotyrosine-containing proteins on day 3 relative to days 1 and 2 in both DEX-stimulated and nonstimulated cultures; several proteins did recover (recuperate) thereafter. On days 1 and 2, the phosphotyrosine signal was higher in several proteins under DEX stimulation; this trend became inverted after day 3. The changes in abundance per cell of Src protein (pp60src) followed a similar trend, and in addition a truncated Src molecule, p54/52src, was detected as a putative cleavage product presumably representing its carboxy terminus. The pp60src was most abundant, relative to its truncated product, in day 7 nonstimulated cultures, whereas under DEX stimulation the truncated species pp54/52src showed the highest relative abundance on days 7. At 30°C, DEX stimulation accentuated the increase in Src protein on day 3, showed no change on day 7, and returned to increase Src protein on day 10. Potassium ionophorvalinomycin, considered to select against mineralizing osteoprogenitors at 30°C, showed on day 10 in the absence of DEX a relative increase in truncated Src protein compared to both DEX-stimulated and nonstimulated cultures in the absence of valinomycin. On day 7 of DEX stimulation, the presence of valinomycin resulted in low p54/52src. Among phosphotyrosine-containing proteins, a 32-34 kDa band, as yet unidentified, showed the most concordant changes with mineralization induction. P32-34 decreased by DEX on days 2 and 8 and increased by low temperature alone or combined with DEX on day 3. On day 7, p32-34 did not change under DEX, but valinomycin selected cells with less phoshpotyrosine-containing p32-34. Taken together, high Src abundance at the start of osteogenic induction followed by a decrease 1 week later is probably related to energy metabolism-dependent induction of mineralization. This is in temporal accord with the increase in Src truncation and fluctuation in mitochondrial membrane potential (which affects mineralization). The reported binding of amino-terminal Src oligopeptide to p32 ADP/ATP carrier in the mitochondrial inner membrane raises the question of its possible involvement in mitochondria-regulated mineralization. J. Cell. Biochem. 69:316-325, 1998. © 1998 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...