ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1573-5036
    Keywords: compost ; fly ash ; lignite ; minesite reclamation ; sewage sludge
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Due to a large reclamation (recultivation) demand in the Lusatian lignite mining district, efficient strategies for the rehabilitation of abandoned mine sites are needed. A field study was conducted for comparing the effects of three different fertilizer treatments (mineral fertilizer, sewage sludge and compost) on soil solution chemistry of both a lignite and pyrite containing spoil as well as a lignite and pyrite free spoil. The lignite and pyrite containing spoil was ameliorated with fly ash from a lignite power plant (17–21 t ha−1 CaO), whereas the lignite and pyrite free site received 7.5 t ha−1 CaO in form of limestone. Fertilizer application rates were: mineral fertilizer 120 N, 100 P and 80 K kg ha−1. 19 t ha−1 sewage sludge and 22 t ha−1 compost were applied. Soil solution was sampled in 20, 60 and 130 cm depth for the period of 16 months. Solution was collected every fortnight and analysed for pH, EC, Ca2+, Mg2+, K+, Na+, Fen+, Aln+, Mn2+, Zn2+, NO3 −, NH4 +, SO4 2−, Cl−, PO4 3−, Cinorg and DOC. Lignite and pyrite containing spoil differed clearly from lignite and pyrite free spoil regarding soil solution concentrations and composition. Acidity (H+) produced by pyrite oxidation led to an enhanced weathering of minerals and, therefore, to at least 10 fold higher soil solution concentrations compared to the lignite and pyrite free site. Major ions in solution of the lignite and pyrite containing site were Ca2+, Mg2+, Fen+, Aln+ and SO4 2−, whereas soil solution at the lignite and pyrite free site was dominated by Ca2+, Mg2+ and SO4 2−. At both sites application of mineral fertilizer led to an immediate but short term (about 1 month) increase of NO3 −, NH4 + and K+ concentrations in soil solution down to a depth of 130 cm. Application of sewage sludge caused a long term (about 16 months) increase of NO3 3 − in the topsoil, whereas NO3 − concentrations in the subsoil were significantly lower compared to the mineral fertilizer plot. Compost application resulted in a strong long-term increase of K+ in soil solution, whereas NO3 − concentrations did not increase. Concentrations of PO4 3− in soil solution depend on solution pH and were not correlated with any treatment.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: amelioration ; compost ; ground beetles ; mine spoil ; revegetation ; sewage sludge
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract On a study site in the Lusatian lignite mining region (Germany), sandy mine spoil was ameliorated with either sewage sludge, compost or mineral fertilizer. Plots were sown with the grass Secale multicaule and planted with pine seedlings except for a control that was not meliorated and not revegetated. Pitfall catches of ground beetles in 1996/97 yielded high numbers of species and individuals directly after revegetation. The dominant beetles were xerophilic species, known to prefer open sandy sites. Catches in different plots were positively correlated with the amount of vegetation cover and declined as follows: amelioration with sewage sludge 〉 compost 〉 mineral fertilizer 〉 untreated control. Even beetles characteristic of open sandy sites showed a distinct preference for plots with high vegetation cover treated with organic waste. For the dominant species, an attraction to shelter and a more balanced, humid microclimate is assumed. A year-to-year comparison showed an increase in beetles typical of dry grasslands and ruderal sites in the second year, while characteristic species of open sandy sites decreased. Application of organic waste combined with revegetation led to an immediate increase in beetle numbers. In the long term, revegetation would be expected to reduce suitable habitats for endangered ground beetles which prefer open sites with poor sandy soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Plant and soil 213 (1999), S. 137-147 
    ISSN: 1573-5036
    Keywords: autochthonous acidophilic bacteria ; column experiments and field study ; fly ash ; mine spoil ; organic waste application ; Thiobacillus
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The impact of organic waste material and fly ash on microbial and chemical pyrite oxidation was investigated in a field experiment, as well as in column tests under laboratory conditions. For the field experiment, pyritic mine spoil was ameliorated with fly ash and treated either with mineral fertiliser, with sewage sludge or with compost. Independent of treatment, during the 18 months following application, the pyrite-S contents decreased steadily in the top spoil (0–30 cm depth). However, high variations of the pyrite-S content were observed. Compared to other pyrite oxidation studies, the pyrite content of the mine spoil at the experimental site was low. Therefore, a model spoil with a higher pyrite content, derived from Tertiary strata of the overburden sequence in the same open-cast mine, was used for the column experiments. For the first column experiment, the model spoil was mixed with fly ash and mineral fertiliser, reflecting the common reclamation practice in the Lusatian open-cast lignite mining district. Columns with this spoil were either inoculated with different cell numbers of autochthonous acidophilic bacteria, isolated from the model spoil, or with a commercial strain of Thiobacillus ferrooxidans. The ratio of sulphate-S to total S was used as a measure for the degree of pyrite oxidation. The ratio of sulphate-S to total S increased within 28 days of incubation. The increase was related to the inoculated cell numbers of bacteria, but independent of the origin of the bacteria. It can be stated, that autochthonous bacteria from the model spoil oxidised pyrite at a similar rate as did the commercial T. ferrooxidans strain. For the second column test, mineral fertiliser, sewage sludge or compost were applied to the model spoil. The columns were inoculated with autochthonous bacteria, isolated from the model spoil. Application of sewage sludge and compost seemed to promote the weathering of pyrite, as the ratio of sulphate-S to total S increased more rapidly in these treatments compared to control or mineral fertiliser application. Both experiments showed an increase of cell numbers of inoculated bacteria, independent of the ratio of sulphate-S to total S.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-5036
    Keywords: decomposition ; forest reclamation ; mine spoil ; N-enriched rock powder ; organic matter production ; rock powder
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The effects of a slow-release N-enriched rock powder on soil chemistry, on the development of the soil vegetation (field layer vegetation), on the nutritional status of pine seedlings (Pinus sylvestris L.), and on decomposition rates of cellulose in lignite-poor mine spoils were studied. In the initial phase after afforestation fertilization caused a significant increase in NO3 −-N concentrations in the soil solution of the top-soil (0–60 cm). Subsequently, NO3 −-N concentrations of all N fertilized treatments decreased with the exception of the highest N application area (500 kg N ha−1). This decrease of NO3 −-N concentrations was related to the establishment of a field layer vegetation, which developed according to the amount of N applied. In the above-ground phytomass of the field layer vegetation a maximum N accumulation amount of 22 kg ha−1 was measured. Cellulose decomposition increased with higher N application rates. In the second year after N-fertilization, the pine needles indicated insufficient supply for almost all nutrients except for N. The deficiency symptoms were most pronounced at the plots that had received the highest amounts of nitrogen. This phenomenon appears to be related to the competition by the field layer vegetation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...