ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Structural chemistry 6 (1995), S. 293-300 
    ISSN: 1572-9001
    Keywords: Ab initio calculations ; molecular structures ; vibrational frequencies ; methylenecarbene and heavy analogues
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Optimum equilibrium geometries, energetics, harmonic vibrational frequencies, and infared intensities within the double harmonic approximation are computed for methylenecarbene, CCH2, and isoelectronic species involving silicon and germanium at both the SCF level of theory and the level of second-order perturbation theory using a 6-311G(2df, 2p) basis set or its equivalent. Optimum equilibrium geometries and energetics are also computed at both levels of theory using a smaller 6-311G(d, p) basis set or its equivalent. This investigation of these species is the first to include all of the systems with germanium. In addition, this present work is the first study to includef-type polarization functions in a systematic investigation of the molecular structure and properties of all the molecules in the series. Acetylenic structures are also computed for energy comparisons. Of all the linear isomers, only acetylene is found to be a minimum on the potential energy surface. However, all of the C2v structures are found to be local minima. Both the C2v and linear structures will serve as a basis for future work involving mapping the entire hyperenergy surfaces of all of the molecular systems in the series.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...