ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-06-14
    Description: Methane is a major contributor to the greenhouse effect, its atmospheric concentration being more than doubled since the XIX century. Every year 22 Tg of methane are released to the atmosphere from several natural and anthropogenic sources. Natural sources include geothermal/volcanic areas but the estimation of the total methane emission from these areas is currently not well defined since the balance between emission through degassing and microbial oxidation within the soils is not well known. Microbial oxidation in soils contributes globally for about 3-9% to the removal of methane from the atmosphere and recent studies evidenced methanotrophic activity also in soils of volcanic/geothermal areas despite their harsh environmental conditions (high temperatures, low pH and high concentrations of H2S and NH3). Methanotrophs are a diverse group of bacteria that are able to metabolize methane as their only source of carbon and energy and are found within the Alpha and Gamma classes of Proteobacteria and within the phylum Verrucomicrobia. Our purpose was to study the interaction between methanotrophic communities and the methane emitted from the geothermally most active site of Pantelleria island (Italy), Favara Grande, whose total methane emission has been previously estimated in about 2.5 t/a. Laboratory incubation experiments with soil samples from Favara Grande showed methane consumption values of up to 9500 ng g-1 dry soil per hour while soils collected outside the geothermal area consume less than 6 ng g-1 h-1. The maximum consumption was measured in the shallowest part of the soil profile (1-3 cm) and high values (〉100 ng g-1 h-1) were maintained up to a depht of 15 cm. Furthermore, the highest consumption was measured at 37 C, and a still recognizable consumption (〉20 ng g-1 h-1) at 80 C, with positive correlation with the methane concentration in the incubation atmosphere. These results can be considered a clear evidence of the presence of methanotrophs that were investigated by culturing and culture-independent techniques. The diversity of proteobacterial methanotrophs was investigated by creating a clone library of the amplified methane mono-oxygenase encoding gene, pmoA. Clone sequencing indicates the presence of Gammaproteobacteria in the soils of Favara Grande. Enrichment cultures, on a mineral medium in a CH4-enriched atmosphere, led to the isolation of different strains that were identified as Methylocistis spp., which belong to the Alphaproteobacteria. The presence of Verrucomicrobia was detected by amplification of pmoA gene using newly designed primers. Soils from Favara Grande show therefore the largest spectrum of methanotrophic microorganisms until now detected in a geothermal environment. While the presence of Verrucomicrobia in geothermal soils was predictable due to their thermophilic and acidophilic character, the presence of both Alpha and Gamma proteobacteria was unexpected. Their presence is limited to the shallowest part of the soil were temperatures are lower and is probably favored by a soil pH that is not too low (pH 5) and their contribution to biological methane oxidation at Pantelleria is significant. Understanding the ecology of methanotrophy in geothermal sites will increase our knowledge of the role of soils in methane emissions in such environments.
    Description: Published
    Description: Vienna, Austria
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: soil methane fluxes ; methanotrophic activity ; 03. Hydrosphere::03.04. Chemical and biological::03.04.04. Ecosystems ; 03. Hydrosphere::03.04. Chemical and biological::03.04.05. Gases ; 03. Hydrosphere::03.04. Chemical and biological::03.04.06. Hydrothermal systems
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Abstract
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-06-14
    Description: Methane plays an important role in the Earth’s atmospheric chemistry and radiative balance being the most important greenhouse gas after carbon dioxide. It has recently been established that geogenic gases contribute significantly to the natural CH4 flux to the atmosphere (Etiope et al., 2008). Volcanic/geothermal areas contribute to this flux, being the site of widespread diffuse degassing of endogenous gases (Chiodini et al., 2005). In such an environment soils are a source rather than a sink for atmospheric CH4 (Cardellini et al., 2003; Castaldi and Tedesco, 2005; D’Alessandro et al., 2009; 2011; 2013). Due to the fact that methane soil flux measurements are laboratory intensive, very few data have been collected until now in these areas. Preliminary studies (Etiope et al., 2007) estimated a total CH4 emission from European geothermal and volcanic systems in the range 4-16 kt a-1. This estimate was obtained indirectly from CO2 or H2O output data and from CO2/CH4 or H2O/CH4 values measured in the main gaseous manifestations. Such methods, although acceptable to obtain order-of-magnitude estimates, completely disregard possible methanotrophic activity within the soil. At the global scale, microbial oxidation in soils contributes for about 3-9% to the total removal of methane from the atmosphere. But the importance of methanotrophic organisms is even larger because they oxidise the greatest part of the methane produced in the soil and in the subsoil before its emission to the atmosphere. Environmental conditions in the soils of volcanic/geothermal areas (i.e. low oxygen content, high temperature and proton activity, etc.) have been considered inadequate for methanotrophic microrganisms. But recently, it has been demonstrated that methanotrophic consumption in soils occurs also under such harsh conditions due to the presence of acidophilic and thermophilic Verrucomicrobia. These organisms were found in Italy at the Solfatara di Pozzuoli (Pol et al., 2007), in New Zealand at Hell’s Gate (Dunfield et al., 2007) and in Kamchatka, Russia (Islam et al., 2008). Both the Italian and the Hellenic territories are geodynamically very active with many active volcanic and geothermal areas. Here we report on methane flux measurements made at Pantelleria (Italy) and at Sousaki and Nisyros (Greece). The total methane output of these three systems is about 10, 19 and 1 t a-1, respectively (D’Alessandro et al., 2009; 2011; 2013). The total emissions obtained from methane flux measurements are up to one order of magnitude lower than those obtained through indirect estimations. Clues of methanotrophic activity within the soils of these areas can be found in the CH4/CO2 ratio of the flux measurements which is always lower than that of the respective fumarolic manifestations, indicating a loss of CH4 during the travel of the gases towards earth’s surface. Furthermore laboratory methane consumption experiments made on soils collected at Pantelleria and Sousaki revealed, for most samples, CH4 consumption rates up to 9.50 µg h-1 and 0.52 µg h-1 respectively for each gram of soil (dry weight). Only few soil samples displayed no methane consumption activity. Finally, microbiological and molecular investigations allowed us to identify the presence of methanotrophic bacteria belonging to the Verrucomicrobia and to the Alpha- and Gamma-Proteobacteria in the soils of the geothermal area of Favara Grande at Pantelleria. While the presence of the former was not unexpected due to the fact that they include acidophilic and thermophilic organisms that were previously found in other geothermal environments, the latter are generally considered not adapted to live in harsh geothermal environments. Their presence in the soils of Pantelleria could be explained by the fact that these soils do not have extremely low pH values (〉5). Indeed thermotollerant methanotrophic Gamma-proteobacteria, have been previously found in the sediments of thermal springs in Kamchatka (Kizilova et al., 2012). Such species could find their niches in the shallowest part of the soils of Favara Grande were the temperatures are not so high and they thrive on the abundant upraising hydrothermal methane.
    Description: Published
    Description: Patras, Greece
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: soil methane fluxes ; methanotrophic activity ; geothermal areas ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-06-14
    Description: Volcanic and geothermal systems emit endogenous gases by widespread degassing from soils, including CH4, a greenhouse gas twenty-five times as potent as CO2. Recently, it has been demonstrated that volcanic or geothermal soils are not only a source of methane, but are also sites of methanotrophic activity. Methanotrophs are able to consume 10–40 Tg of CH4 a−1 and to trap more than 50% of the methane degassing through the soils. We report on methane microbial oxidation in the geothermally most active site of Pantelleria (Italy), Favara Grande, whose total methane emission was previously estimated at about 2.5Mga−1 (t a−1). Laboratory incubation experiments with three top-soil samples from Favara Grande indicated methane consumption values of up to 59.2 nmol g−1 soil d.w. h−1. One of the three sites, FAV2, where the highest oxidation rate was detected, was further analysed on a vertical soil profile, the maximum methane consumption was measured in the topsoil layer, and values greater than 6.23 nmol g−1 h−1 were still detected up to a depth of 13 cm. The highest consumption rate was measured at 37 C, but a still detectable consumption at 80 C (〉1.25 nmol g−1 h−1) was recorded. The soil total DNA extracted from the three samples was probed by Polymerase Chain Reaction (PCR) using standard proteobacterial primers and newly designed verrucomicrobial primers, targeting the unique methane monooxygenase gene pmoA; the presence of methanotrophs was detected at sites FAV2 and FAV3, but not at FAV1, where harsher chemical–physical conditions and negligible methane oxidation were detected. The pmoA gene libraries from the most active site (FAV2) pointed to a high diversity of gammaproteobacterial methanotrophs, distantly related to Methylocaldum-Metylococcus genera, and the presence of the newly discovered acido-thermophilic Verrucomicrobia methanotrophs. Alphaproteobacteria of the genus Methylocystis were isolated from enrichment cultures under a methane-containing atmosphere at 37 C. The isolates grow at a pH range of 3.5 to 8 and temperatures of 18–45 C, and consume 160 nmol of CH4 h−1 mL−1 of culture. Soils from Favara Grande showed the largest diversity of methanotrophic bacteria detected until now in a geothermal soil. While methanotrophic Verrucomicrobia are reported as dominating highly acidic geothermal sites, our results suggest that slightly acidic soils, in high-enthalpy geothermal systems, host a more diverse group of both culturable and uncultivated methanotrophs.
    Description: Published
    Description: 5865–5875
    Description: 4V. Vulcani e ambiente
    Description: JCR Journal
    Description: open
    Keywords: geothermal soils ; methanotrophic activity ; Verrucomicrobia ; Alphaproteobacteria ; Gammaproteobacteria ; geothermal gases ; 01. Atmosphere::01.01. Atmosphere::01.01.02. Climate ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-09-15
    Description: Methane plays an important role in the Earth’s atmospheric chemistry and radiative balance being the most important greenhouse gas after carbon dioxide. It is released to the atmosphere by a wide number of sources, both natural and anthropogenic, with the latter being twice as large as the former. It has recently been established that significant amounts of geological methane, produced within the Earth’s crust, are currently released naturally into the atmosphere. Active or recent volcanic-geothermal areas represent one of these sources of geological methane. Due to the fact that methane flux measurements are laboratory intensive, very few data have been collected until now and the contribution of this source has been often indirectly estimated. Both the Italian and the Hellenic territories are geodynamically very active with many volcanic and geothermal areas. Here we report on methane flux measurements made at Pantelleria (Italy), Sousaki and Nisyros (Greece). The total outputs of these three systems are about 10, 19 and 2 t a-1 respectively. These figures are up to one order of magnitude lower than those obtained through indirect estimations. At the global scale, microbial oxidation in soils contributes to the total removal of methane from the atmosphere. Environmental conditions in the soils of volcanic/geothermal areas (i.e. low pH, high temperature, etc.) have been considered inadequate for methanotrophic microrganisms. But recently, it has been demonstrated that methanotrophic consumption in soils occurs also under such harsh conditions due to the presence of thermo-acidophilic Verrucomicrobia. Here we present the results of laboratory incubation experiments on soil samples collected at the main exhalative areas that highlighted methanotrophic activity also at Pantelleria and Sousaki. Soil metagenomic DNA was extracted from some of the Pantelleria samples and analysed using Temporal Temperature Gradient Electrophoresis (TTGE) of the amplified Bacterial 16S rRNA gene in order to evaluate the total bacterial diversity. Soil DNA amplification with primers targeting Proteobacterial and Verrucomicrobial methane monooxygenase genes (pmmo) revealed the presence of methanotrophs affiliated to both phyla up to a depth of 11 cm and a temperature of 80°C. The diversity of proteobacterial methanotrophs was investigated by creating a clone library of the amplified methane mono-oxygenase encoding gene, pmmoA. The clone sequences are close to those of uncultured type I methanotrophic proteobacteria. An attempt to isolate methanotrophs was carried out on soils from Pantelleria, sampled at different depths, by enrichment cultures on a mineral medium in a methane-enriched atmosphere. No isolates were obtained from enrichments carried out at 65°C while incubation at 37°C allowed to isolate a few methanothropic strains that were identified as Methylocystis spp.
    Description: Published
    Description: Kagoshima, Japan
    Description: 4.5. Studi sul degassamento naturale e sui gas petroliferi
    Description: open
    Keywords: soil methane fluxes ; methane output ; methanotrophic activity ; geothermal systems ; 01. Atmosphere::01.01. Atmosphere::01.01.07. Volcanic effects ; 04. Solid Earth::04.04. Geology::04.04.12. Fluid Geochemistry ; 04. Solid Earth::04.08. Volcanology::04.08.01. Gases
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: Oral presentation
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...