ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Catalysis letters 38 (1996), S. 157-163 
    ISSN: 1572-879X
    Keywords: methanol synthesis ; Cu/ZnO catalyst ; effect of reduction temperature ; oxygen coverage ; physical mixture ; Cu-Zn alloy
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The hydrogenation of CO2 over physically-mixed Cu/SiO2 and ZnO/SiO2 was carried out to clarify the synergetic effect between Cu and ZnO in Cu/ZnO methanol synthesis catalysts. The activity of the physical mixtures significantly increased with increasing reduction temperature in the range of 573–723 K. TEM-EDX results definitely showed that ZnOx moieties migrated from ZnO/SiO2 particles onto the surface of Cu particles when the physical mixtures were reduced at high temperatures above 573 K. Upon the migration of the ZnOx species, the oxygen coverage on the surface of Cu, measured after the hydrogenation of CO2, increased with the reduction temperature. The results clearly showed that the synergetic effect of ZnO in the physical mixtures can be ascribed to the creation of active sites such as Cu+ which the ZnOx moieties stabilize on the Cu surface. Further, XRD results showed that the migrated ZnOx species partly dissolved into the Cu particles to form a Cu—Zn alloy.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1572-879X
    Keywords: methanol synthesis ; Cu(111) ; Cu(110) ; Zn deposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The hydrogenation of CO2 over Zn-deposited Cu(111) and Cu(110) surfaces was performed at 523 K and 18 atm using a high pressure flow reactor combined with XPS apparatus. It was shown that the ZnO x species formed on Cu(111) during reaction directly promoted the methanol synthesis. However, no such promotional effect of the Zn was observed for methanol formation on Cu(110). Thus, Zn on Cu(111) acts as a promoter, while Zn on Cu(110) acts as a poison. The activation energy and the turnover frequency are in fairly good agreement with those obtained for Cu/ZnO powder catalysts.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1572-879X
    Keywords: methanol synthesis ; copper catalyst ; oxygen coverage
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The coverage of oxygen formed on the surface of catalysts during methanol synthesis from CO2 has been measured for copper-based catalysts including various metal oxides using a method called reactive frontal chromatography (RFC). An excellent correlation between the specific activity for methanol synthesis and the oxygen coverage (θ) was obtained, where the activity increased linearly with oxygen coverage atθ〈0.16 and then decreased atθ〉0.18. The results strongly indicate that the support effect or addition of metal oxides revealed in methanol synthesis over copper catalysts is ascribed to the ratio of Cu+ to Cu0 on the surface of copper particles.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1572-879X
    Keywords: methanol synthesis ; copper catalyst ; role of ZnO ; XPS
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract Methanol synthesis by the hydrogenation of CO2 over Zn-deposited polycrystalline Cu was studied using surface science techniques. The Zn sub-monolayer was oxidized by the reaction mixture during the reaction at 523 K, leading to the formation of ZnO species. The kinetic results definitely showed that the ZnO species on the Cu surface promoted the catalytic activity of methanol formation, where the activity of Cu increased by a factor of 6 at the Zn coverage of 0.17. A volcano-shaped curve was obtained for the correlation between the Zn coverage and the catalytic activity, which was very similar to the correlation curve between the oxygen coverage and the specific activity for methanol formation previously obtained for the Cu powder catalysts. The role of ZnO in Cu/ZnO based catalysts was ascribed to the stabilization of Cu+ species by the ZnO moieties on the Cu surface.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1572-879X
    Keywords: methanol synthesis ; Cu/ZnO catalyst ; Cu-Zn alloy ; effect of reduction temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The behavior and role of ZnO in Cu/ZnO catalysts for the hydrogenations of CO and CO2 were studied using XRD, TEM coupled with EDX, TPD and FT-IR. As the reduction temperature increased, the specific activity for the hydrogenation of CO2 increased, whereas the activity for the hydrogenation of CO decreased. The EDX and XRD results definitely showed that ZnO x (x = 0–1) moieties migrate onto the Cu surface and dissolve into the Cu particle forming a Cu-Zn alloy when the Cu/ZnO catalysts were reduced at high temperatures above 600 K. The content of Zn dissolved in the Cu particles increased with reduction temperature and reached ∼ 18% at a reduction temperature of 723 K. The CO-TPD and FT-IR results suggested the presence of Cu+ sites formed in the vicinity of ZnO x on the Cu surface, where the Cu+ species were regarded as an active catalytic component for methanol synthesis.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...