ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • membrane vesicles  (1)
Collection
Keywords
Publisher
Years
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of bioenergetics and biomembranes 23 (1991), S. 615-646 
    ISSN: 1573-6881
    Keywords: Potassium channels ; venoms ; charybdotoxin ; noxiustoxin ; iberiotoxin ; apamin ; leiurotoxin 1 ; dendrotoxin ; membrane vesicles ; peptides
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology , Physics
    Notes: Abstract Potassium channels comprise groups of diverse proteins which can be distinguished according to each member's biophysical properties. Some types of K+ channels are blocked with high affinity by specific peptidyl toxins. Three toxins, charybdotoxin, iberiotoxin, and noxiustoxin, which display a high degree of homology in their primary amino acid sequences, have been purified to homogeneity from scorpion venom. While charybdotoxin and noxiustoxin are known to inhibit more than one class of channel (i.e., several Ca2+-activated and voltage-dependent K+ channels), iberiotoxin appears to be a selective blocker of the high-conductance, Ca2+-activated K+ channel that is present in muscle and neuroendocrine tissue. A distinct class of small-conductance Ca2+-activated K+ channel is blocked by two other toxins, apamin and leiurotoxin-1, that share no sequence homology with each other. A family of homologous toxins, the dendrotoxins, have been purified from venom of various related species of snakes. These toxins inhibit several inactivating voltage-dependent K+ channels. Although molecular biology approaches have been employed to identify and characterize several species of voltagegated K+ channels, toxins directed against a particular channel can still be useful in defining the physiological role of that channel in a particular tissue. In addition, for those K+ channels which are not yet successfully probed by molecular biology techniques, toxins can be used as biochemical tools with which to purify the target protein of interest.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...