ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Astrophysics  (1)
  • magnetic shear  (1)
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Space science reviews 87 (1999), S. 283-286 
    ISSN: 1572-9672
    Keywords: coronal heating ; magnetic field ; magnetic shear ; magnetic explosion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Physics
    Notes: Abstract From magnetic fields and coronal heating observed in flares, active regions, quiet regions, and coronal holes, we propose that exploding sheared core magnetic fields are the drivers of most of the dynamics and heating of the solar atmosphere, ranging from the largest and most powerful coronal mass ejections and flares, to the vigorous microflaring and coronal heating in active regions, to a multitude of fine-scale explosive events in the magnetic network, driving microflares, spicules, global coronal heating, and, consequently, the solar wind.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Observations of cool DA and DB white dwarfs have not yet been successful in detecting coronal X-ray emission, but observations of late-type dwarfs and giants show that coronae are common for these stars. To produce coronal X-rays, a star must have dynamo-generated surface magnetic fields and a well-developed convection zone. There is some observational evidence that the DA star LHS 1038 and the DB star GD 358 have weak and variable surface magnetic fields. It has been suggested that such fields can be generated by dynamo action, and since both stars have well-developed convection zones, theory predicts detectable levels of coronal X-rays from these white dwarfs. However, we present analysis of Chandra observations of both stars showing no detectable X-ray emission. The derived upper limits for the X-ray fluxes provide strong constraints on theories of formation of coronae around magnetic white dwarfs. Another important implication of our negative Chandra observations is the possibility that the magnetic fields of LHS 1038 and GD 358 are fossil fields.
    Keywords: Astrophysics
    Type: The Astrophysical Journal; 593; 481-485
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...