ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of intelligent and robotic systems 9 (1994), S. 25-43 
    ISSN: 1573-0409
    Keywords: Robot kinematics ; VLSI ; cordic arithmetic ; kinematic redundancy ; pseudoinverse
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract We describe new architectures for the efficient computation of redundant manipulator kinematics (direct and inverse). By calculating the core of the problem in hardware, we can make full use of the redundancy by implementing more complex self-motion algorithms. A key component of our architecture is the calculation in the VLSI hardware of the Singular Value Decomposition of the manipulator Jacobian. Recent advances in VLSI have allowed the mapping of complex algorithms to hardware using systolic arrays with advanced computer arithmetic algorithms, such as the coordinate rotation (CORDIC) algorithms. We use CORDIC arithmetic in the novel design of our special-purpose VLSI array, which is used in computation of the Direct Kinematics Solution (DKS), the manipulator Jacobian, as well as the Jacobian Pseudoinverse. Application-specific (subtask-dependent) portions of the inverse kinematics are handled in parallel by a DSP processor which interfaces with the custom hardware and the host machine. The architecture and algorithm development is valid for general redundant manipulators and a wide range of processors currently available and under development commercially.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of intelligent and robotic systems 14 (1995), S. 43-68 
    ISSN: 1573-0409
    Keywords: Robotics ; kinematics ; redundancy ; damped least squares singularity robustness
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract In this paper, we present a tutorial report of the literature on the damped-least squares method which has been used for computing velocity inverse kinematics of robotic manipulators. This is a local optimization method that can prevent infeasible joint velocities near singular configurations by using a damping factor to control the norm of the joint velocity vector. However, the exactness of the inverse kinematic solution has to be sacrificed in order to achieve feasibility. The damping factor is an important parameter in this technique since it determines the trade-off between the accuracy and feasibility of the inverse kinematic solution. Various methods that have been proposed to compute an appropriate damping factor are described. Redundant manipulators, possessing extra degrees of freedom, afford more choice of inverse kinematic solutions than do non-redundant ones. The damped least-squares method has been used in conjunction with redundancy resolution schemes to compute feasible joint velocities for redundant arms while performing an additional subtask. We outline the different techniques that have been proposed to achieve this objective. In addition, we introduce an iterative method to compute the optimal damping factor for one of the redundancy resolution techniques.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...