ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Penicillium chrysogenum  (1)
  • iron distribution in shoot organs  (1)
Collection
Publisher
Years
  • 1
    ISSN: 1572-8773
    Keywords: iron ; siderophores ; coprogen ; plant nutrition ; Penicillium chrysogenum
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Abstract Cucumber, as a strategy I plant, and Maize as a strategy II plant, were cultivated in hydroponic culture in the presence of a ferrated siderophore mixture (1 μM) from a culture of Penicillium chrysogenumisolated from soil. The siderophore mixture significantly improved the iron status of these plants as measured by chlorophyll concentration to the same degree as a 100-fold higher FeEDTA supply. Analysis of the siderophore mixture from P. chrysogenum by HPLC and electrospray mass spectrometry revealed that besides the trihydroxamates, coprogen and ferricrocin, large amounts of dimerum acid and fusarinines were present which represent precursor siderophores or breakdown products of coprogen. In order to prove the iron donor properties of dimerum acid and fusarinines for plants, purified coprogen was hydrolyzed with ammonia and the hydrolysis products consisting of dimerum acid and fusarinine were used for iron uptake by cucumber and maize. In short term experiments radioactive iron uptake and translocation rates were determined using ferrioxamine B, coprogen and hydrolysis products of coprogen. While the trihydroxamates revealed negligible or intermediate iron uptake rates by both plant species, the fungal siderophore mixture and the ammoniacal hydrolysis products of coprogen showed high iron uptake, suggesting that dimerum acid and fusarinines are very efficient iron sources for plants. Iron reduction assays using cucumber roots or ascorbic acid also showed that iron bound to hydrolysis products of coprogen was more easily reduced compared to iron bound to trihydroxamates. Ligand exchange studies with epi-hydroxymugineic acid and EDTA showed that iron was easily exchanged between coprogen hydrolysis products and phytosiderophores or EDTA. The results indicate that coprogen hydrolysis products are an excellent source for Fe nutrition of plants.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5036
    Keywords: iron distribution in shoot organs ; iron uptake, Phaseolus vulgaris L., retranslocation of iron
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A study has been made on the effect of primary leaves on iron (Fe) distribution in the shoot. Bean (Phaseolus vulgaris L.) seedlings were precultured in nutrient solution with 8×10-5 M FeEDTA for 4 days, and then grown further with either 8×10-5 M FeEDTA (+Fe) or without Fe supply (-Fe) for another 5 days. Thereafter, both +Fe and -Fe plants were treated in three different ways: undisturbed; one primary leaf removed; or one primary leaf shaded, starting two hours before supply 59FeEDTA to the roots. The +Fe plants were supplied with 8×10-5 M 59FeEDTA, and the -Fe plants with only 1×10-6 M 59FeEDTA. After 1 to 8 hour uptake periods, plants were harvested and 59Fe in different organs was determined. Removal or shading of one primary leaf did not affect 59Fe uptake by roots and 59Fe translocation to the shoot in +Fe plants. In the -Fe plants, however, removal of one primary leaf decreased 59Fe uptake by roots, whereas shading of one primary leaf had no effect on 59Fe uptake but slightly enhanced 59Fe translocation from roots to the shoot. The quantity of 59Fe in primary leaves was positively correlated with quantity of 59Fe in the stem in the -Fepplants, but not in the +Fe plants. In both, the +Fe and -Fe plants, the quantity of 59Fe in the shoot apex was positively correlated with 59Fe in primary leaves. The results suggest that irrespective of the Fe nutritional status of plants, the source of Fe for the shoot apex is Fe retranslocated from primary leaves.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...