ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of membrane biology 121 (1991), S. 163-176 
    ISSN: 1432-1424
    Keywords: Na,K-ATPase ; ion pumps ; electrogenic transport ; potentiometric dyes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary In the first part of the paper, evidence has been presented that electrochromic styryl dyes, such as RH 421, incorporate into Na, K-ATPase membranes isolated from mammalian kidney and respond to changes of local electric field strength. In this second part of the paper, fluorescence studies with RH-421-labeled membranes are described, which were carried out to obtain information on the nature of charge-translocating reaction steps in the pumping cycle. Experiments with normal and chymotrypsin-modified membranes show that phosphorylation by ATP and occlusion of Na+ are electroneutral steps, and that release of Na+ from the occluded state to the extracellular side is associated with translocation of charge. Fluorescence signals observed in the presence of K+ indicate that binding and occlusion of K+ at the extracellular face of the pump is another major electrogenic reaction step. The finding that the fluorescence signals are insensitive to changes of ionic strength leads to the conclusion that the binding pocket accommodating Na+ or K+ is buried in the membrane dielectric. This corresponds to the notion that the binding sites are connected with the extracellular medium by a narrow access channel (“ion well”). This notion is further supported by experiments with lipophilic ions, such as tetraphenylphosphonium (TPP+) or tetraphenylborate (TPB−), which are known to bind to lipid bilayers and to change the electrostatic potential inside the membrane. Addition of TPP+ leads to a decrease of binding affinity for Na+ and K+, which is thought to result from the TPP−-induced change of electric field strength in the access channel.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-1424
    Keywords: Na, K-ATPase ; ion pumps ; electrogenic transport ; voltage-sensitive dyes ; electrochromic effects
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Chemistry and Pharmacology
    Notes: Summary Membrane fragments containing a high density of Na, K-ATPase can be noncovalently labeled with amphiphilic styryl dyes (e.g., RH 421). Phosphorylation of the Na,K-ATPase by ATP in the presence of Na+ and in the absence of K+ leads to a large increase of the fluorescence of RH 421 (up to 100%). In this paper evidence is presented that the styryl dye mainly responds to changes of the electric field strength in the membrane, resulting from charge movements during the pumping cycle: (i) The spectral characteristic of the ATP-induced dye response essentially agrees with the predictions for an electrochromic shift of the absorption peak. (ii) Adsorption of lipophilic anions to Na, K-ATPase membranes leads to an increase, adsorption of lipophilic cations to the decrease of dye fluorescence. These ions are known to bind to the hydrophobic interior of the membrane and to change the electric field strength in the boundary layer close to the interface. (iii) The fluorescence change that is normally observed upon phosphorylation by ATP is abolished at high concentrations of lipophilic ions. Lipophilic ions are thought to redistribute between the adsorption sites and water and to neutralize in this way the change of field strength caused by ion translocation in the pump protein. (iv) Changes of the fluorescence of RH 421 correlate with known electrogenic transitions in the pumping cycle, whereas transitions that are known to be electrically silent do not lead to fluorescence changes. The information obtained from experiments with amphiphilic styryl dyes is complementary to the results of electrophysiological investigations in which pump currents are measured as a function of transmembrane voltage. In particular, electrochromic dyes can be used for studying electrogenic processes in microsomal membrane preparations which are not amenable to electrophysiological techniques.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...