ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part A: Polymer Chemistry 35 (1997), S. 2193-2206 
    ISSN: 0887-624X
    Keywords: multicomponent ; latex ; interpenetrating polymer networks ; IPN ; core/shell ; morphology ; Chemistry ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: A series of novel structured latex particles with interpenetrating polymer network (IPN) cores and glassy SAN shells were developed in an attempt to investigate the feasibility of these polymers as both toughening and damping agents in thermoplastics. The IPN cores were composed of one impact part (polybutadiene based) and one damping part (acrylic based, with Tg around +10°C). The particle morphologies of these polymers were determined by TEM. The glass transitions and mechanical behavior of the polymers were characterized from DMS. The effect of different components on the final core/shell particle morphologies and mechanical properties was studied. The mechanical behavior of core/shell particles with IPN cores was also compared with that of separate core/shell and multilayered core/shell particles. In addition, normal core/shell synthesis (rubbery part first then the glassy part) and inverted core/shell synthesis (glassy part first then the rubbery part) were performed to provide another access for morphology control. It was found that the core/shell latex particles with poly(butyl acrylate) based copolymers are more miscible than poly(ethylhexyl methacrylate)-based copolymers. The high grafting efficiency of poly(butyl acrylate) plays an important role in governing phase miscibility. The latex particles synthesized by the inverted core/shell mode showed higher miscibility than the normal synthesized ones. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 2193-2206, 1997
    Additional Material: 12 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 1501-1514 
    ISSN: 0887-6266
    Keywords: multicomponent ; latex ; interpenetrating polymer networks ; IPN ; core/shell ; damping ; loss area ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: The integrals of the linear loss shear modulus vs. temperature (loss area, LA) and linear tan δ vs. temperature (tan δ area, TA) were characterized for various core/shell latex particles with synthetic rubber, poly(butadiene-stat-styrene) [P (Bd/S), 90/10], and interpenetrating polymer networks (IPN) as the cores. The IPN cores were composed of P(Bd/S) (Tg ≃ - 70°C) and an acrylate based copolymer (Tg around 10°C) for potential impact and damping improvement in thermoplastics. Poly(styrene-stat-acrylonitrile) (SAN, 72/28) was the shell polymer for all these polymers. Under the same loading, for both toughening and damping controls, among the IPN core/shell, blend of separate core/shell, and multilayered core/shell polymers, the IPN core/shell polymers were the best dampers. However, the other core/shell polymers also showed higher LA values than P(Bd/S)/SAN core/shell polymer. A comparison of LA values via a group contribution analysis method was made, the effect of particle morphology and phase continuity on damping being studied. Inverted core/shell latex particles (glassy polymer SAN was synthesized first) showed much higher LA and TA values than normal core/shell ones (rubbery polymer was synthesized first). Models for maximum LA and TA behavior are proposed. The damping property was essentially controlled by the phase miscibility and morphology of the core/shell latex particles. The LA values for each peak in these multiphase materials provided some indication of the several fractional phase volumes. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1501-1514, 1997
    Additional Material: 9 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Bognor Regis [u.a.] : Wiley-Blackwell
    Journal of Polymer Science Part B: Polymer Physics 35 (1997), S. 1973-1984 
    ISSN: 0887-6266
    Keywords: interpenetrating polymer networks ; simultaneous interpenetrating networks ; IPN ; SIN ; metastable phase diagrams ; epoxy-acrylate ; Physics ; Polymer and Materials Science
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Physics
    Notes: Simultaneous interpenetrating polymer networks (SINs) based on epoxy/poly(n-butyl acrylate) systems were synthesized at 120°C. The polymerization kinetics were studied both in situ by Fourier Transform Infrared Spectroscopy (FT-IR). Three key events occurred during the polymerization, namely the gelation of the network I, gelation of the network II, and phase separation of one polymer from the other. Thus, metastable phase diagrams describing the relations between the three events were constructed. Three-dimensional tetrahedrons characterizing the four-component system (the two monomers and the two polymers) allow the visualization of these three key events and also define some critical points, for example, the loci of the points where simultaneous gelation of the two networks occurs. The inside of the tetrahedron was also investigated using partially reacted model compounds. These tetrahedrons can be used as guidelines for setting up a synthesis strategy leading to desired morphologies. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 1973-1984, 1997
    Additional Material: 11 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...