ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Fish physiology and biochemistry 16 (1997), S. 1-10 
    ISSN: 1573-5168
    Keywords: nitrite ; recovery from nitrite intoxication ; potassium balance ; hyperkalaemia ; hypokalaemia ; methaemoglobinaemia ; intracellular potassium and water contents
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstracts The ability of carp to recover from nitrite-induced methaemoglobinaemia and disturbances in potassium balance and cell volume was studiedin vivo andin vitro. Nitrite accumulated to a plasma concentration of 3 mM during 2 days of nitrite exposure was eliminated from the plasma within 2–3 days in clean water. The nitrite-induced methaemoglobinaemia disappeared after 3 days of recovery. During nitrite exposure, K+ was lost from the red blood cells (RBCs) and from skeletal muscle tissue, which led to reduced cell volume and an extracellular hyperkalaemia. Extracellular [K+] rose less than predicted if lost K+ had remained in the extracellular space, suggesting further transport of K+ to the environment. The intracellular K+ and water content were restored after few days of recovery in clean water, but this was paralleled by development of an extracellular hypokalaemia. This shows that intracellular K+ balance was reestablished at the expense of the extracellular compartment, and supports that an overall K+ deficit resulted from K+ loss to the environment during nitrite exposure. Ventricle tissue differed from skeletal muscle and RBCs by not loosing K+ and by having increased sodium and water contents during nitrite exposure. These changes were corrected by recovery in nitrite-free water. In vitro addition of nitrite to blood with low O2 saturation induced metHb formation and RBC K+ efflux. Subsequent reduction of metHb to functional Hb was similar in blood with low and high O2 tension. A net re-uptake of K+ was observed only in RBCs with low O2 saturation and when metHb reached low values.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...