ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 22 (1984), S. 59-81 
    ISSN: 1573-4889
    Keywords: Al-diffusion coating ; platinum ; hot corrosion ; acidic and basic fluxing ; sulfate melt
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract Electrochemical corrosion measurements have been carried out with Pt-containing and Pt-free Al-diffusion coatings on IN 738 LC in a 90Na2SO4+ 10K2SO4 (mol%) melt at 1173 K. Pt improves the resistance to basic fluxing while there are no significant differences between both coating types in their resistance to acidic fluxing. The corrosion resistance of the Pt-containing coating is also higher in the passive potential region where protective scales rich in Al2O3 are formed. The reason for the different behavior of both coating types appears to be related to the high corrosion resistance of the Pt-rich surface layer of the coating and an increased Al2O3 content in the scale of the Pt-containing type.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 42 (1994), S. 265-284 
    ISSN: 1573-4889
    Keywords: Ni3Al intermetallic compound ; combustion gas ; hot corrosion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The corrosion behavior of Ni3Al containing small additions of Ti, Zr, and B in combustion gases both with and without Na2SO4−NaCl deposits at 600–800°C has been studied for times up to four days. The corrosion of the saltfree Ni3Al leads to the formation of very thin alumina scales at 600°C but of mixed NiO−Al2O3 scales containing also some sulfur compounds at higher temperatures, while the rate increases with temperature up to 800°C. The presence of the salt deposits considerably accelerates the corrosion rate, especially at 600 and 800°C. The duplex scales formed at 600°C are composed mostly of a mixture of NiO and unreacted salt in the outer layer and of alumina and aluminum sulfide with some nickel compounds in the inner layer. The scales grown at 700°C contain only one layer of complex composition, while those grown at 800°C are similar but have an additional outer layer containing similar amounts of nickel and aluminum. At 600 and 700°C NiSO4 can be detected also in the salt layer. The samples corroded at 700°C and 800°C also show an Al-depleted zone containing titanium sulfide precipitates at the surface of the alloy. The hot corrosion of Ni3Al involves a combination of various mechanisms, including fluxing of the oxide scale as well as mixed oxidation-sulfidation attack. At all temperatures Ni3Al shows poor resistance to hotcorrosion attack as a result of the formation of large amounts of Ni compounds in the scales.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-4889
    Keywords: Nb-modified Ti3Al ; combustion gas ; hot corrosion
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The corrosion behavior of a Nb-modified Ti3Al intermetallic compound containing 11 at.% Nb in a simulated combustion gas with and without deposits of a Na2SO4−NaCl mixture was examined at 600–800°C for times up to four days. In the absence of salt deposits the corrosion rates were rather low and increased only slightly with temperature, producing very thin scales of mixed oxides of Ti, Al, and Nb without sulfides. The presence of the salt deposits produced higher weight gains during an initial stage of one to two days at 600 and 700°C, after which the reaction stopped. A more important and longlasting effect was observed instead at 800°C, when the kinetics of hot corrosion became nearly linear. The scales formed by hot corrosion were complex mixtures of various corrosion products at all temperatures and showed a porous outer region containing a mixture of unreacted salts with oxides (mainly TiO2), an intermediate region of a mixture of variable composition of oxides of the three metals, and a TiO2-rich layer beneath it. At 800°C the scales tended to form a thin, discontinuous Al2O3-rich layer in the middle and contained an additional innermost region presenting a large concentration of sulfur, very likely as Nb and Ti sulfides. The high rate of hot corrosion at 800°C is attributed to the appearance of sulfides in the inner region of the scale and to a more efficient scale fluxing.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Oxidation of metals 19 (1983), S. 201-229 
    ISSN: 1573-4889
    Keywords: Acidic and basic fluxing ; hot corrosion ; sulfate melt ; superalloys
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The influence of the electrode potential on the corrosion behavior of a series of Ni-base superalloys has been investigated in a (mole %) 90Na2SO4-10K2SO4 melt at 1173 K. Acidic fluxing occurs at positive potentials and basic fluxing at negative potentials. A protective scale is formed in an intermediate (neutral) potential range on high chromium-containing alloys such as IN-738LC, IN-939, IN-597, and IN-657. The breakthrough potentials for acidic and basic fluxing depend on the composition of the alloy. Alloys with low chromium contents such as IN-100 and IN-713LC do not form stable protective scales at any potential. Numerous sulfide phases have been identified in the scale and subscale, depending on potential, severity of attack, and material composition. NaCrS2 only forms under basic fluxing conditions. Its presence can therefore be considered as an indication that basic fluxing conditions have existed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...