ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Journal of pharmacokinetics and pharmacodynamics 14 (1986), S. 289-308 
    ISSN: 1573-8744
    Keywords: hepatic elimination ; hepatic clearance ; dispersion model ; well-stirred model ; parallel-tube model ; tube-in-series model ; metabolite kinetics ; phenacetin ; acetaminophen ; enzyme heterogeneity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A dispersion model of hepatic elimination is presented to describe metabolite formation and elimination kinetics within the liver, consistent with the known physiology and biochemistry of this organ. The model is based on the spread in residence times of blood flowing through the liver. This dispersion model is shown to be more consistent with transient and steady-state data obtained after the single passage of phenacetin and acetaminophen through the liver (both normal and retrograde perfusions) than other models of hepatic elimination. The dispersion model is suitable for the evaluation of enzyme heterogeneity using experimentally obtained metabolite data.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Journal of pharmacokinetics and pharmacodynamics 20 (1992), S. 19-61 
    ISSN: 1573-8744
    Keywords: axial tissue diffusion ; hepatic elimination ; hepatic availability ; well-stirred model ; parallel-tube model ; distributed-tube model ; dispersion model ; protein binding ; hepatic blood flow ; enzyme heterogeneity ; flow heterogeneity ; metabolite kinetics ; lipophilic drugs
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract An assumption of previous models of hepatic elimination is that there is negligible axial diffusion in the liver. We show, by construction of a stochastic model and analysis of published data, that compounds which are readily diffusible and partitioned into hepatocytes may undergo axial tissue diffusion. The compounds most likely to be affected by axial tissue diffusion are the lipophilic drugs for which the cell membranes provide little resistance and which are highly extracted, thereby creating steep concentration gradients along the sinusoid at steady state. This phenomenon greatly modifies the availability of the compound under conditions of altered hepatic blood flow and protein binding. For moderately diffusible compounds, these relationships are similar to those predicted by the simplistic venous-equilibrium model. Hence, the paradoxical ability of the venous-equilibrium model to describe the steady-state kinetics of lipophilic drugs such as lidocaine, meperidine, and propranolol may be finally resolved. The effects of axial tissue diffusion and vascular dispersion on hepatic availability of drugs are compared. Vascular dispersion is of major importance to the availability of poorly diffusible compounds, whereas axial tissue diffusion becomes increasingly dominant for highly diffusive and partitioned substances.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Journal of pharmacokinetics and pharmacodynamics 27 (1999), S. 343-382 
    ISSN: 1573-8744
    Keywords: convection-dispersion model ; hepatic elimination ; extended convection-dispersion model ; interconnecting sinusoids ; inverse Gaussian distribution ; secondary vascular compartment ; hepatic disposition
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The conventional convection-dispersion (also called axial dispersion) model is widely used to interrelate hepatic availability (F) and clearance (Cl) with the morphology and physiology of the liver and to predict effects such as changes in liver blood flow on F and Cl. An extended form of the convection-dispersion model has been developed to adequately describe the outflow concentration–time profiles for vascular markers at both short and long times after bolus injections into perfused livers. The model, based on flux concentration and a convolution of catheters and large vessels, assumes that solute elimination in hepatocytes follows either fast distribution into or radial diffusion in hepatocytes. The model includes a secondary vascular compartment, postulated to be interconnecting sinusoids. Analysis of the mean hepatic transit time (MTT) and normalized variance (CV2) of solutes with extraction showed that the discrepancy between the predictions of MTT and CV2 for the extended and unweighted conventional convection-dispersion models decreases as hepatic extraction increases. A correspondence of more than 95% in F and Cl exists for all solute extractions. In addition, the analysis showed that the outflow concentration–time profiles for both the extended and conventional models are essentially identical irrespective of the magnitude of rate constants representing permeability, volume, and clearance parameters, providing that there is significant hepatic extraction. In conclusion, the application of a newly developed extended convection-dispersion model has shown that the unweighted conventional convection-dispersion model can be used to describe the disposition of extracted solutes and, in particular, to estimate hepatic availability and clearance in both experimental and clinical situations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of pharmacokinetics and pharmacodynamics 14 (1986), S. 227-260 
    ISSN: 1573-8744
    Keywords: dispersion model ; hepatic elimination ; bolus ; well-stirred model ; parallel-tube model ; distributed model ; protein binding ; hepatic cellular activity ; cellular permeability ; blood flow ; bioavailability
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract A dispersion model of hepatic elimination, based on the residence time distribution of blood elements within the liver, is presented. The general rate equations appropriate for describing the hepatic output concentration of a tracer solute are derived. Particular consideration is given to events following a bolus input dose of a tracer. The model is shown to be compatible with the known hepatic architecture and hepatic physiology. The model has been fitted to hepatic outflow data for red blood cells, albumin, and other noneliminated solutes. The experimental data suggest a high degree of dispersion of blood elements within the liver. The model has also been used to evaluate the effects of changes in enzyme activity, hepatic cell permeability, blood flow, and protein binding on the outflow concentration vs. time profiles of solutes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1573-8744
    Keywords: hepatic elimination ; hepatic clearance ; availability ; intrinsic clearance ; pharmacokinetics ; dispersion model ; well-stirred model ; tube model ; distributed model ; blood flow ; binding within blood ; hepatocellular enzyme activity
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology
    Notes: Abstract The dispersion model of hepatic elimination is based on the distribution of residence times of blood elements within the liver. The model has two asymptotic solutions corresponding to the “wellstirred” model (complete mixing of blood elements) and the “parallel-tube” model (no variation in residence times of blood elements). The steady-state form of the dispersion model relevant to pharmacokinetic analysis is developed and explored with respect to changes in blood flow, in binding within blood, and in hepatocellular enzyme activity. Literature data are used to evaluate discrepancies among the predictions of the dispersion, well-stirred, and tube models. It is concluded that the dispersion model is consistent-with the data. The limitations of steady-state perfusion experiments to estimate the residence time distribution of blood elements within the liver are considered.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...