ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Agroforestry systems 31 (1995), S. 257-274 
    ISSN: 1572-9680
    Keywords: hedgerow intercropping ; experimental designs ; land equivalent ratio ; Leucaena leucocephala ; Senna siamea (syn.Cassia siamea)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract A field experiment was conducted for eight cropping seasons from 1988 to 1991 in semiarid Machakos, Kenya, to compare the productivity of shrubs and crops in intercropping (alleycropping) versus block (sole) planting systems. The study, conducted in a split-plot experiment with three replications, consisted of two tree species (Leucaena leucocephala andSenna siamea syn.Cassia siamea) in the main-plots and combinations of two planting systems (alleycropping and block planting of the shrubs and maize) with five different ratios of land allocation for the shrub and crop (100∶0, 15∶85, 20∶80, 25∶75, and 0∶100) in sub-plots. Thus, a sole maize and a sole tree were included in the subplot treatments. The spacing between hedgerows of shrubs in intercropping was 6.7, 5, and 4 m, respectively, corresponding to 15, 20, and 25% land allocation to shrubs. The trees were pruned to 0.5 m height four times a year. Intercropped hedgerows of senna and leucaena produced 10% and 24% more biomass than their respective block planting systems. On average, leucaena produced more biomass than senna. Maize alleycropped with leucaena yielded 16% less grain than sole-crop maize, whereas senna intercropping caused hardly any maize-yield reduction. Compared with the respective sole-crop systems, leucaena intercropping did not affect land equivalent ratio (LER), whereas LER increased by 28% with senna intercropping. The different tree:crop land occupancy ratios did not affect the production of either the component species or of the total system, except that LER declined with incrreased spacing between hedgerows. It is concluded that in semiarid highlands of Kenya, leucaena and crops should better be grown in sole blocks, not in alleycropping. In the case of slow-growing species such as senna, intercropping is worthwhile to consider only if the additional labour needed does not pose a serious problem for management, and the species has fodder value.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Agroforestry systems 38 (1997), S. 3-50 
    ISSN: 1572-9680
    Keywords: Boundary paintings ; hedgerow intercropping ; improved fallows ; parkland systems ; sequential systems ; simultaneous systems
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The rate and extent to which biophysical resources are captured and utilized by the components of an agroforestry system are determined by the nature and intensity of interactions between the components. The net effect of these interactions is often determined by the influence of the tree component on the other component(s) and/or on the overall system, and is expressed in terms of such quantifiable responses as soil fertility changes, microclimate modification, resource (water, nutrients, and light) availability and utilization, pest and disease incidence, and allelopathy. The paper reviews such manifestations of biophysical interactions in major simultaneous (e.g., hedgerow intercropping and trees on croplands) and sequential (e.g., planted tree fallows) agroforestry systems. In hedgerow intercropping (HI), the hedge/crop interactions are dominated by soil fertility improvement and competition for growth resources. Higher crop yields in HI than in sole cropping are noted mostly in inherently fertile soils in humid and subhumid tropics, and are caused by large fertility improvement relative to the effects of competition. But, yield increases are rare in semiarid tropics and infertile acid soils because fertility improvement does not offset the large competitive effect of hedgerows with crops for water and/or nutrients. Whereas improved soil fertility and microclimate positively influence crop yields underneath the canopies of scattered trees in semiarid climates, intense shading caused by large, evergreen trees negatively affects the yields. Trees in boundary plantings compete with crops for above- and belowground resources, with belowground competition of trees often extending beyond their crown areas. The major biophysical interactions in improved planted fallows are improvement of soil nitrogen status and reduction of weeds in the fallow phase, and increased crop yields in the subsequent cropping phase. In such systems, the negative effects of competition and micro-climate modification are avoided in the absence of direct tree–crop interactions. Future research on biophysical interactions should concentrate on (1) exploiting the diversity that exists within and between species of trees, (2) determining interactions between systems at different spatial (farm and landscape) and temporal scales, (3) improving understanding of belowground interactions, (4) assessing the environmental implications of agroforestry, particularly in the humid tropics, and (5) devising management schedules for agroforestry components in order to maximize benefits.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Springer
    Agroforestry systems 13 (1991), S. 143-158 
    ISSN: 1572-9680
    Keywords: Tree-crop interface ; row orientation ; hedgerow intercropping ; alley cropping ; Leucaena ; sorghum ; sunflower ; experimental design ; semi-arid tropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract The paper describes a tree/crop interface (TCI) experiment designed to investigate the effects of row orientation using Leucaena leucocephala Lam. Each TCI plot consisted of a regularly pruned Leucaena hedge in the middle and 12 crop rows on either side. Eight such plots were arranged at 45° around a sole Leucaena plot with rows oriented in four compass directions viz., North-South, East-West, Northeast-Southwest and Northwest-Southeast. Results of four years from 1984 to 1987 did not show any effect of row orientation, and similarly, no effect was seen on crop rows due to their location on the windward or leeward side of the hedge. The TCI effect was positive on the first crop row in the first year because Leucaena grew slowly, but depressed the yield of the first 4 to 6 crop rows(1.8 to 2.7 m from hedge) in subsequent years. The negative effect of Leucaena was noted more on sunflower in a relatively dry year than on sorghum in other years. Results from the TCI plots were used to estimate the yield of five hedgerow intercropping (HI) systems with varying alley widths (2.7 to 9.9 m). Comparison with sole stands of Leucaena and crops indicated that HI was more productive particularly at close alley widths. For example, hedges spaced at 2.7 m and 3.6 m averaged 37% and 25% higher productivity than the respective sole stands; but this advantage may be an overestimation of the real potential. The relevance of TCI experiments for studying agroforestry systems, their merits and limitations, especially of the design employed in this study are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1572-9680
    Keywords: perennials ; agroforestry ; alley cropping ; hedgerow intercropping ; Leucaena ; pearl millet ; pigeonpea ; castor ; semi-arid tropics
    Source: Springer Online Journal Archives 1860-2000
    Topics: Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract An experiment was conducted at ICRISAT Center, Patancheru, India from June 1984 to April 1988 on a shallow Alfisol to determine whether the productivity of annual crop systems can be improved by adding perennial species such as Leucaena leucocephala managed as hedgerows. Except in the first year, crop yields were suppressed by Leucaena due to competition for moisture. The severity of competition was high in years of low rainfall and on long-duration crops such as castor and pigeonpea. Based on total biomass, sole Leucaena was most productive; even on the basis of land productivity requiring both Leucaena fodder and annual crops, alley cropping had little or no advantage over block planting of both components. Application of hedge prunings as green manure or mulch on top of 60 kg N and 30 kg P 2 O 5ha−1 to annual crops did not show any benefit during the experimental period, characterized by below average rainfall. Indications are that (i) alley cropping was beneficial in terms of soil and water conservation with less runoff and soil loss with 3 m alleys than with 5.4 m alleys, and (ii) root pruning or deep ploughing might be effective in reducing moisture competition.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...