ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0730-2312
    Keywords: heat-shock proteins ; glucose-regulated proteins ; protein phosphorylation ; heat-shock response ; stress response ; brain tumor cells ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: Induction of heat-shock proteins and glucose-regulated proteins in 9L rat brain tumor cells can be differentially elicited by sodium arsenite, cadmium chloride, zinc chloride, copper sulfate, sodium fluoride, and L-azetidine-2-carboxylic acid. The kinds of stress protein induced by the above chemicals varied considerably, mainly determined by the nature and the concentration of the chemicals, as well as the treatment protocols. In addition, at the concentrations where stress proteins can be induced, the above chemicals were able to suppress general protein synthesis and were cytotoxic. Enhanced phosphorylation of a protein with an apparent molecular weight of 65 kDa was detected during the induction of stress proteins except in azetidine treatments during which uptake of phosphate by the cells was impaired after prolonged incubation. The phosphate moiety on the 65 kDa phosphoprotein appeared to be alkaline-stable and two-dimensional gel electrophoresis revealed that the phosphoprotein resolved into four isoforms with isoelectric points ranging from 5.1 to 5.6. Enhanced phosphorylation of the same protein was also detected in heat-shocked and withangulatin A-treated 9L cells in which stress proteins were induced. It is suggested that this phosphoprotein may be a common target for heat stress response-stimulated phosphorylation and important in the further metabolic responses of the cell to stress. © 1993 Wiley-Liss, Inc.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, N.Y. : Wiley-Blackwell
    Journal of Cellular Biochemistry 61 (1996), S. 255-265 
    ISSN: 0730-2312
    Keywords: glucose-regulated proteins ; heat shock proteins ; heat shock ; okadaic acid ; protein phosphorylation ; vimentin ; Life and Medical Sciences ; Cell & Developmental Biology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Notes: We have demonstrated that pretreatment but not post-treatment with okadaic acid (OA) can aggravate cytotoxicity as well as alter the kinetics of stress protein expression and protein phosphorylation in heat shocked cells. Compared to heat shock, cells recovering from 1 hr pretreatment of OA at 200 nM and cotreated with heat shock at 45°C for the last 15 min of incubation (OA→HS treatment) exhibited enhanced induction of heat shock proteins (HSPs) 70 and 110. In addition to enhanced expression, the attenuation of HSC70 and HSP90 after the induction peaks was also delayed in OA→HS-treated cells. The above treatment also resulted in the rapid induction of the 78 kDa glucose-regulated protein (GRP78), which expression remained constant in cells recovering from treatment with 200 nM OA for 1 hr, heat shocked at 45°C for 15 min, or in combined treatment in reversed order (HS→OA treatment). Enhanced phosphorylation of vimentin and proteins with molecular weights of 65, 40, and 33 kDa and decreased phosphorylation of a protein with a molecular weight of 29 kDa were also observed in cells recovering from OA→HS treatment. Again, protein phosphorylation in cells recovering from HS→OA treatment did not differ from those in cells treated only with heat shock. Since the alteration in the kinetics of stress protein expression and protein phosphorylation was tightly correlated, we concluded that there is a critical link between induction of the stress proteins and phosphorylation of specific proteins. Furthermore, the rapid induction of GRP78 under the experimental condition offered a novel avenue for studying the regulation of its expression. © 1996 Wiley-Liss, Inc.
    Additional Material: 8 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...