ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • geodesy  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2023-12-01
    Description: Abstract
    Description: The joint ESA/NASA Mass-change And Geosciences International Constellation (MAGIC) mission has the objective to extend time series from previous gravity missions, including an improvement of accuracy and spatio-temporal resolution. The long-term monitoring of Earth's gravity field carries information on mass-change induced by water cycle, climate change, and mass transport processes between atmosphere, cryosphere, oceans and solid Earth. The MAGIC mission will be composed of two satellite pairs flying in different orbit planes. The NASA/DLR--led first pair (P1) is expected to be in a near-polar orbit around 500 km of altitude; while the second ESA--led pair (P2) is expected to be in an inclined orbit of 65--70 degrees at approximately 400 km altitude. The ESA--led pair P2 Next Generation Gravity Mission (NGGM) shall be launched after P1 in a staggered manner to form the MAGIC constellation. The addition of an inclined pair shall lead to reduction of temporal aliasing effects and consequently of reliance on de-aliasing models and post-processing. The main novelty of the MAGIC constellation is the delivery of mass-change products at higher spatial resolution, temporal (i.e. sub--weekly) resolution, shorter latency, and higher accuracy than GRACE and GRACE-FO. This will pave the way to new science applications and operational services. The performances of different MAGIC mission scenarios for different application areas in the field of geosciences were analysed in the frame of the initial ESA Science Support activities for MAGIC. The data sets provided here are the Level-2a simulated gravity field solutions of MAGIC scenarios and the related reference signal that were used for these analyses. The .gfc files in the folders monthly (31-day solutions) and weekly (7-day solutions) contain the estimated (HIS) coefficients (Cnm, Snm) as well as the formal errors (SigCnm, SigSnm) of the different MAGIC scenarios. In order to compute the coefficient errors, the reference/true HIS coefficients contained in the folder HIS_reference_fields need to be subtracted from the estimated HIS coefficients. The data sets provided here comprise the Level-2a simulated gravity field solutions of MAGIC scenarios and the related reference signal (based on Dobslaw et al. 2014; 2015) that were used for the above analyses.
    Keywords: Satellite gravity ; Time variable gravity ; Hydrology ; Global change from geodesy ; Earthquake dynamics ; Glaciology ; ICGEM ; geodesy ; temporal gravity field model ; simulated gravity field ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITATIONAL FIELD
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-03-25
    Description: Abstract
    Description: The International Geodynamics and Earth Tide Service (IGETS) was established in 2015 by the International Association of Geodesy (IAG). IGETS continues the activities of the Global Geodynamics Project (GGP, 1997-2015) to provide support to geodetic and geophysical research activities using superconducting gravimeter (SG) data within the context of an international network. The SG site “Serrahn” is located in the TERENO Observatory in the nort-eastern German lowlands. The observatory contributes to investigating the regional impact of climate and land use change. At the IGETS site Serrahn, the mean annual temperature is 8.8 °C and mean annual precipitation is 591 mm. The land cover is mainly characterized as a mixed forest, dominated by European beech and Scots pine. Influenced by the last glaciation in an outwash close to the terminal morraine, the uppermost soil layer of the site consists of aeolian sands up to a depth of 450 cm, followed by coarser sandy material with intercalated till layers. The unconfined groundwater level is at about 14 m below surface. There is hardly any human activity (e.g., traffic) at this quiet forest site. The nearest town is Neustrelitz at a distance of 5 km. Since December 2017, the superconducting gravimeter iGrav-033 is operated outdoors at this forest location (Latitude: 53.3392 N, Longitude: 13.17413 E, Elevation: 79.60 m). The gravimeter is installed in a dedicated field enclosure on top of a concrete pillar with an area of 1.1 m x 1.1 m at an elevation of 0.80 m above the terrain surface. The pillar has been build to a depth of 2.00 m below the surface. One additional pillar (also 1.1 m x 1.1 m, at surface level) is located right next to the iGrav installation and is used for repeated observations with absolute gravimeters (AG). At the site, meteorological (precipitation, air temperature, humidity, air pressure) and hydrological (groundwater, soil moisture, sapflow, throughfall) parameters are monitored by different sensors. Raw gravity and local atmospheric pressure records sampled at second intervals and the same records decimated at 1‐minute samples are provided as Level 1 products to the IGETS network.
    Keywords: Superconducting gravimetry ; Earth tides ; Geodynamics ; IGETS ; International Geodynamics and Earth Tide Service ; geophysics ; geodesy ; hydrology ; EARTH SCIENCE 〉 SOLID EARTH 〉 GRAVITY/GRAVITATIONAL FIELD 〉 GRAVITY ; environment 〉 geophysical environment ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 GRAVITY STATIONS ; In Situ Land-based Platforms 〉 GEOPHYSICAL STATIONS/NETWORKS 〉 SGO ; In Situ/Laboratory Instruments 〉 Magnetic/Motion Sensors 〉 Gravimeters 〉 SUPERCONDUCTING GRAVIMETER ; science 〉 geography 〉 geodesy
    Type: Dataset , Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...