ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 0947-6539
    Keywords: gas-phase chemistry ; mass spectrometry ; periodic trends ; peroxides ; transition-metal ions ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: The bimolecular gas-phase reactions of d-block transition-metal cations M+ with dimethyl peroxide were screened by means of Fourier transform ion cyclotron resonance mass spectrometry. The rich chemistry can be classified into four types of reactions: i) Oxygen-atom transfer to generate MO+, ii) elimination of radicals, mostly CH3O·, iii) intramolecular redox reaction of dimethyl peroxide to form CH3OH, CH2O and CO, and iv) charge transfer from the metal cation to produce CH3OOCH3+. Some general trends became apparent from this study. For example, the “early” transition metals almost exclusively induce oxygen transfer to generate MO+, in line with the notoriously high oxophilicities of these metals, and electron transfer is only observed for Zn+ and Hg+. Both the radical loss and the disproportionation reaction emerge from a rovibrationally highly excited insertion intermediate (CH3O)2M+, and for the first-row metals the branching ratio of the competing processes seems to be affected by the M+—OR bond strengths as well as the electronic groundstate configurations of M+. For the 4d and 5d cations Ru+—Ag+ and Pt+—Au+, respectively, products resulting from intramolecular redox reactions dominate; this probably reflects the higher propensity of these metal ions to facilitate β-hydrogen atom shifts.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Weinheim : Wiley-Blackwell
    Angewandte Chemie International Edition in English 34 (1995), S. 1973-1995 
    ISSN: 0570-0833
    Keywords: bond activation ; gas-phase chemistry ; kinetics ; mass spectrometry ; transition-metal oxides ; C-H activation ; C-C activation ; Gas-phase reactions ; Mass spectrometry ; Transition metals ; Chemistry ; General Chemistry
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology
    Notes: Over the last decade the gas-phase chemistry of bare transition-metal oxide cations MO+ has received considerable attention. This interest is primarily due to the particular role of metal oxides in the oxidation of organic compounds in a variety of chemical and biochemical transformations. At a molecular level the simplest model system for these processes deals with reactions of bare metal-oxide ions in the gas phase. Due to the high oxophilicities of the early transition metals, their monoxide cations MO+ do not mediate O-atom transfer to any organic compounds at all. In contrast, monoxide cations of late transition metal can oxygenate a variety of hydro-carbons, and the most reactive ions, MnO+, FeO+, NiO+, OsO+, and PtO+, even activate methane. Insight into the reaction mechanisms of these oxidation processes can be obtained by analysis of reaction kinetics, isotope effects, product distributions etc., and for the reactions of MO+ with alkanes the initial C—H bond activation by MO+ is often rate-determining. Interestingly, the high reactivity of some MO+ ions is not always associated with a decrease in regioselectivity; for example, FeO+ ions induce regiospecific γ-C—H bond activation of dialkylketones in the gas phase. The situation for the epoxidation of olefins in the gas phase turns out to be even more complex than for condensedphase analogues. This is primarily because the metal ion that mediates O-atom transfer to the olefin also catalyzes the isomerization of the epoxides formed, to afford the energetically more stable aldehydes or ketones. Aromatic compounds can also be hydroxylated by MO+ ions, and particularly the oxidation of benzene by bare FeO+ ions in the gas phase reveals striking parallels to the metabolism of arenes. Furthermore, the storing capabilities of ion cyclotron resonance mass spectrometers even permit the design of catalytic processes in which a single metal ion converts more than one substrate molecule into an oxygenated product in a sequence of strictly bimolecular reactions. The most outstanding examples are the Pt+-mediated oxidation of methane by molecular oxygen and the Co+-mediated hydroxylation of benzene by N2O as oxidant. Finally, the key features of the gas-phase reactions are compared with observations in condensed-phase systems in which metal oxides are anticipated as central intermediates. The result of this comparison is promising in the sense that, in general, the understanding of transition-metal-mediated oxidations in the gas phase may lead to a more uniform description of these processes at a molecular level. Ultimately, it is hoped that gas-phase studies will serve as one of the building blocks in the evolution of tailor-made catalysts.
    Additional Material: 4 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...